| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdgval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdgval.a | ⊢ 𝐴  =  dom  𝐼 | 
						
							| 4 | 1 | 1vgrex | ⊢ ( 𝑈  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 5 | 1 2 3 | vtxdgfval | ⊢ ( 𝐺  ∈  V  →  ( VtxDeg ‘ 𝐺 )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑈  ∈  𝑉  →  ( VtxDeg ‘ 𝐺 )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  ( ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ‘ 𝑈 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ∈  ( 𝐼 ‘ 𝑥 )  ↔  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑢  =  𝑈  →  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } ) ) | 
						
							| 11 |  | sneq | ⊢ ( 𝑢  =  𝑈  →  { 𝑢 }  =  { 𝑈 } ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝐼 ‘ 𝑥 )  =  { 𝑢 }  ↔  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } ) ) | 
						
							| 13 | 12 | rabbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } }  =  { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑢  =  𝑈  →  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } )  =  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) ) | 
						
							| 15 | 10 14 | oveq12d | ⊢ ( 𝑢  =  𝑈  →  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 17 |  | ovex | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) )  ∈  V | 
						
							| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) ) ) | 
						
							| 19 | 7 18 | eqtrd | ⊢ ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑈 } } ) ) ) |