| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdlfuhgr1v.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdlfuhgr1v.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdlfuhgr1v.e | ⊢ 𝐸  =  { 𝑥  ∈  𝒫  𝑉  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  ∧  𝑈  ∈  𝑉 )  →  𝐺  ∈  UHGraph ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  ∧  𝑈  ∈  𝑉 )  →  𝑈  ∈  𝑉 ) | 
						
							| 6 | 1 2 3 | lfuhgr1v0e | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  →  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  ∧  𝑈  ∈  𝑉 )  →  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 8 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 9 | 1 8 | vtxduhgr0e | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉  ∧  ( Edg ‘ 𝐺 )  =  ∅ )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) | 
						
							| 10 | 4 5 7 9 | syl3anc | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  ∧  𝑈  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) | 
						
							| 11 | 10 | ex | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐼 : dom  𝐼 ⟶ 𝐸 )  →  ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) ) |