Step |
Hyp |
Ref |
Expression |
1 |
|
vtxduhgr0e.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxduhgr0e.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
4 |
3
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
5 |
3 2
|
edg0iedg0 |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
8 |
1 3
|
vtxdg0e |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
9 |
8
|
ex |
⊢ ( 𝑈 ∈ 𝑉 → ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
11 |
7 10
|
sylbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐸 = ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
12 |
11
|
3impia |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ∧ 𝐸 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |