Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxduhgrun
Metamath Proof Explorer
Description: The degree of a vertex in the union of two hypergraphs on the same
vertex set is the sum of the degrees of the vertex in each hypergraph.
(Contributed by Mario Carneiro , 12-Mar-2015) (Revised by Alexander van
der Vekens , 21-Dec-2017) (Revised by AV , 12-Dec-2020) (Proof
shortened by AV , 19-Feb-2021)
Ref
Expression
Hypotheses
vtxduhgrun.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
vtxduhgrun.j
⊢ 𝐽 = ( iEdg ‘ 𝐻 )
vtxduhgrun.vg
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
vtxduhgrun.vh
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
vtxduhgrun.vu
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
vtxduhgrun.d
⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ )
vtxduhgrun.g
⊢ ( 𝜑 → 𝐺 ∈ UHGraph )
vtxduhgrun.h
⊢ ( 𝜑 → 𝐻 ∈ UHGraph )
vtxduhgrun.n
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 )
vtxduhgrun.u
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) )
Assertion
vtxduhgrun
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) )
Proof
Step
Hyp
Ref
Expression
1
vtxduhgrun.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
2
vtxduhgrun.j
⊢ 𝐽 = ( iEdg ‘ 𝐻 )
3
vtxduhgrun.vg
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
4
vtxduhgrun.vh
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
5
vtxduhgrun.vu
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
6
vtxduhgrun.d
⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ )
7
vtxduhgrun.g
⊢ ( 𝜑 → 𝐺 ∈ UHGraph )
8
vtxduhgrun.h
⊢ ( 𝜑 → 𝐻 ∈ UHGraph )
9
vtxduhgrun.n
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 )
10
vtxduhgrun.u
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) )
11
1
uhgrfun
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 )
12
7 11
syl
⊢ ( 𝜑 → Fun 𝐼 )
13
2
uhgrfun
⊢ ( 𝐻 ∈ UHGraph → Fun 𝐽 )
14
8 13
syl
⊢ ( 𝜑 → Fun 𝐽 )
15
1 2 3 4 5 6 12 14 9 10
vtxdun
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) )