Metamath Proof Explorer


Theorem vtxduhgrun

Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 19-Feb-2021)

Ref Expression
Hypotheses vtxduhgrun.i 𝐼 = ( iEdg ‘ 𝐺 )
vtxduhgrun.j 𝐽 = ( iEdg ‘ 𝐻 )
vtxduhgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
vtxduhgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
vtxduhgrun.vu ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
vtxduhgrun.d ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ )
vtxduhgrun.g ( 𝜑𝐺 ∈ UHGraph )
vtxduhgrun.h ( 𝜑𝐻 ∈ UHGraph )
vtxduhgrun.n ( 𝜑𝑁𝑉 )
vtxduhgrun.u ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼𝐽 ) )
Assertion vtxduhgrun ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 vtxduhgrun.i 𝐼 = ( iEdg ‘ 𝐺 )
2 vtxduhgrun.j 𝐽 = ( iEdg ‘ 𝐻 )
3 vtxduhgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
4 vtxduhgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
5 vtxduhgrun.vu ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
6 vtxduhgrun.d ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ )
7 vtxduhgrun.g ( 𝜑𝐺 ∈ UHGraph )
8 vtxduhgrun.h ( 𝜑𝐻 ∈ UHGraph )
9 vtxduhgrun.n ( 𝜑𝑁𝑉 )
10 vtxduhgrun.u ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼𝐽 ) )
11 1 uhgrfun ( 𝐺 ∈ UHGraph → Fun 𝐼 )
12 7 11 syl ( 𝜑 → Fun 𝐼 )
13 2 uhgrfun ( 𝐻 ∈ UHGraph → Fun 𝐽 )
14 8 13 syl ( 𝜑 → Fun 𝐽 )
15 1 2 3 4 5 6 12 14 9 10 vtxdun ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) )