Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdun.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
vtxdun.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
3 |
|
vtxdun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
vtxdun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
5 |
|
vtxdun.vu |
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) |
6 |
|
vtxdun.d |
⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) |
7 |
|
vtxdun.fi |
⊢ ( 𝜑 → Fun 𝐼 ) |
8 |
|
vtxdun.fj |
⊢ ( 𝜑 → Fun 𝐽 ) |
9 |
|
vtxdun.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
10 |
|
vtxdun.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) |
11 |
|
df-rab |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
12 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐼 ∪ 𝐽 ) ) |
13 |
|
dmun |
⊢ dom ( 𝐼 ∪ 𝐽 ) = ( dom 𝐼 ∪ dom 𝐽 ) |
14 |
12 13
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐼 ∪ dom 𝐽 ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ) ) |
16 |
|
elun |
⊢ ( 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) |
17 |
15 16
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
19 |
|
andir |
⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
20 |
18 19
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) ) |
21 |
20
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
22 |
11 21
|
syl5eq |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
23 |
|
unab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } |
24 |
23
|
eqcomi |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) |
25 |
24
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) ) |
26 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
27 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
29 |
7
|
funfnd |
⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐼 Fn dom 𝐼 ) |
31 |
8
|
funfnd |
⊢ ( 𝜑 → 𝐽 Fn dom 𝐽 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 Fn dom 𝐽 ) |
33 |
6
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) |
34 |
|
fvun1 |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
35 |
30 32 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
36 |
28 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
37 |
36
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
38 |
37
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
39 |
26 38
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
40 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
41 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
42 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐼 Fn dom 𝐼 ) |
43 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐽 Fn dom 𝐽 ) |
44 |
6
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) |
45 |
|
fvun2 |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
46 |
42 43 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
47 |
41 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
48 |
47
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) ) ) |
49 |
48
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
50 |
40 49
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
51 |
39 50
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
52 |
22 25 51
|
3eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
54 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
55 |
54
|
dmex |
⊢ dom 𝐼 ∈ V |
56 |
55
|
rabex |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V |
57 |
56
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ) |
58 |
2
|
fvexi |
⊢ 𝐽 ∈ V |
59 |
58
|
dmex |
⊢ dom 𝐽 ∈ V |
60 |
59
|
rabex |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V |
61 |
60
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ) |
62 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 |
63 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 |
64 |
|
ss2in |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) |
65 |
62 63 64
|
mp2an |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
66 |
65 6
|
sseqtrid |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ ) |
67 |
|
ss0 |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) |
69 |
|
hashunx |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
70 |
57 61 68 69
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
71 |
53 70
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
72 |
|
df-rab |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
73 |
17
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) |
74 |
|
andir |
⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) |
75 |
73 74
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) ) |
76 |
75
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
77 |
72 76
|
syl5eq |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
78 |
|
unab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } |
79 |
78
|
eqcomi |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) |
80 |
79
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) ) |
81 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
82 |
36
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } ) ) |
83 |
82
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
84 |
81 83
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
85 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
86 |
47
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } ) ) |
87 |
86
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
88 |
85 87
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
89 |
84 88
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
90 |
77 80 89
|
3eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
92 |
55
|
rabex |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
93 |
92
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
94 |
59
|
rabex |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
95 |
94
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
96 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 |
97 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 |
98 |
|
ss2in |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) |
99 |
96 97 98
|
mp2an |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
100 |
99 6
|
sseqtrid |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ ) |
101 |
|
ss0 |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) |
102 |
100 101
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) |
103 |
|
hashunx |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
104 |
93 95 102 103
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
105 |
91 104
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
106 |
71 105
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
107 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
108 |
57 107
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
109 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
110 |
61 109
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
111 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
112 |
93 111
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
113 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
114 |
95 113
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
115 |
108 110 112 114
|
xnn0add4d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
116 |
106 115
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
117 |
9 5
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝑈 ) ) |
118 |
|
eqid |
⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) |
119 |
|
eqid |
⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) |
120 |
|
eqid |
⊢ dom ( iEdg ‘ 𝑈 ) = dom ( iEdg ‘ 𝑈 ) |
121 |
118 119 120
|
vtxdgval |
⊢ ( 𝑁 ∈ ( Vtx ‘ 𝑈 ) → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
122 |
117 121
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
123 |
|
eqid |
⊢ dom 𝐼 = dom 𝐼 |
124 |
3 1 123
|
vtxdgval |
⊢ ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
125 |
9 124
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
126 |
9 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐻 ) ) |
127 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
128 |
|
eqid |
⊢ dom 𝐽 = dom 𝐽 |
129 |
127 2 128
|
vtxdgval |
⊢ ( 𝑁 ∈ ( Vtx ‘ 𝐻 ) → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
130 |
126 129
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
131 |
125 130
|
oveq12d |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
132 |
116 122 131
|
3eqtr4d |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |