| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdun.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
vtxdun.j |
⊢ 𝐽 = ( iEdg ‘ 𝐻 ) |
| 3 |
|
vtxdun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 4 |
|
vtxdun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 5 |
|
vtxdun.vu |
⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) |
| 6 |
|
vtxdun.d |
⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) |
| 7 |
|
vtxdun.fi |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 8 |
|
vtxdun.fj |
⊢ ( 𝜑 → Fun 𝐽 ) |
| 9 |
|
vtxdun.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 10 |
|
vtxdun.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) |
| 11 |
|
df-rab |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
| 12 |
10
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐼 ∪ 𝐽 ) ) |
| 13 |
|
dmun |
⊢ dom ( 𝐼 ∪ 𝐽 ) = ( dom 𝐼 ∪ dom 𝐽 ) |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐼 ∪ dom 𝐽 ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ) ) |
| 16 |
|
elun |
⊢ ( 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) |
| 17 |
15 16
|
bitrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) ) |
| 18 |
17
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 19 |
|
andir |
⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 20 |
18 19
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) ) |
| 21 |
20
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
| 22 |
11 21
|
eqtrid |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
| 23 |
|
unab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } |
| 24 |
23
|
eqcomi |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) ) |
| 26 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
| 27 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 29 |
7
|
funfnd |
⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐼 Fn dom 𝐼 ) |
| 31 |
8
|
funfnd |
⊢ ( 𝜑 → 𝐽 Fn dom 𝐽 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 Fn dom 𝐽 ) |
| 33 |
6
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) |
| 34 |
|
fvun1 |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 35 |
30 32 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 36 |
28 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 37 |
36
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 38 |
37
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 39 |
26 38
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 40 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } |
| 41 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 42 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐼 Fn dom 𝐼 ) |
| 43 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐽 Fn dom 𝐽 ) |
| 44 |
6
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) |
| 45 |
|
fvun2 |
⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 46 |
42 43 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 47 |
41 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 48 |
47
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) ) ) |
| 49 |
48
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
| 50 |
40 49
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
| 51 |
39 50
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
| 52 |
22 25 51
|
3eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 54 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
| 55 |
54
|
dmex |
⊢ dom 𝐼 ∈ V |
| 56 |
55
|
rabex |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V |
| 57 |
56
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ) |
| 58 |
2
|
fvexi |
⊢ 𝐽 ∈ V |
| 59 |
58
|
dmex |
⊢ dom 𝐽 ∈ V |
| 60 |
59
|
rabex |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ) |
| 62 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 |
| 63 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 |
| 64 |
|
ss2in |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) |
| 65 |
62 63 64
|
mp2an |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
| 66 |
65 6
|
sseqtrid |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ ) |
| 67 |
|
ss0 |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) |
| 68 |
66 67
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) |
| 69 |
|
hashunx |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 70 |
57 61 68 69
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 71 |
53 70
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 72 |
|
df-rab |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
| 73 |
17
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) |
| 74 |
|
andir |
⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) |
| 75 |
73 74
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) ) |
| 76 |
75
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
| 77 |
72 76
|
eqtrid |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
| 78 |
|
unab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } |
| 79 |
78
|
eqcomi |
⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) ) |
| 81 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
| 82 |
36
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } ) ) |
| 83 |
82
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
| 84 |
81 83
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
| 85 |
|
df-rab |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } |
| 86 |
47
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } ) ) |
| 87 |
86
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
| 88 |
85 87
|
eqtr3id |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
| 89 |
84 88
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
| 90 |
77 80 89
|
3eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 92 |
55
|
rabex |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
| 94 |
59
|
rabex |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
| 95 |
94
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
| 96 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 |
| 97 |
|
ssrab2 |
⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 |
| 98 |
|
ss2in |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) |
| 99 |
96 97 98
|
mp2an |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
| 100 |
99 6
|
sseqtrid |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ ) |
| 101 |
|
ss0 |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) |
| 102 |
100 101
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) |
| 103 |
|
hashunx |
⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 104 |
93 95 102 103
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 105 |
91 104
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 106 |
71 105
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 107 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 108 |
57 107
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 109 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 110 |
61 109
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 111 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 112 |
93 111
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 113 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 114 |
95 113
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 115 |
108 110 112 114
|
xnn0add4d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 116 |
106 115
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 117 |
9 5
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝑈 ) ) |
| 118 |
|
eqid |
⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) |
| 119 |
|
eqid |
⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) |
| 120 |
|
eqid |
⊢ dom ( iEdg ‘ 𝑈 ) = dom ( iEdg ‘ 𝑈 ) |
| 121 |
118 119 120
|
vtxdgval |
⊢ ( 𝑁 ∈ ( Vtx ‘ 𝑈 ) → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 122 |
117 121
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 123 |
|
eqid |
⊢ dom 𝐼 = dom 𝐼 |
| 124 |
3 1 123
|
vtxdgval |
⊢ ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 125 |
9 124
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 126 |
9 4
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐻 ) ) |
| 127 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
| 128 |
|
eqid |
⊢ dom 𝐽 = dom 𝐽 |
| 129 |
127 2 128
|
vtxdgval |
⊢ ( 𝑁 ∈ ( Vtx ‘ 𝐻 ) → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 130 |
126 129
|
syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 131 |
125 130
|
oveq12d |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 132 |
116 122 131
|
3eqtr4d |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |