Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdusgr0edgnel
Metamath Proof Explorer
Description: A vertex in a simple graph has degree 0 iff there is no edge incident
with this vertex. (Contributed by AV , 17-Dec-2020) (Proof shortened by AV , 24-Dec-2020)
Ref
Expression
Hypotheses
vtxdushgrfvedg.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
vtxdushgrfvedg.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
vtxdushgrfvedg.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion
vtxdusgr0edgnel
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) )
Proof
Step
Hyp
Ref
Expression
1
vtxdushgrfvedg.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
2
vtxdushgrfvedg.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
3
vtxdushgrfvedg.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
4
usgruhgr
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph )
5
1 2 3
vtxduhgr0edgnel
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) )
6
4 5
sylan
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) )