Metamath Proof Explorer


Theorem vtxdusgr0edgnelALT

Description: Alternate proof of vtxdusgr0edgnel , not based on vtxduhgr0edgnel . A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtxdushgrfvedg.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdushgrfvedg.e 𝐸 = ( Edg ‘ 𝐺 )
vtxdushgrfvedg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion vtxdusgr0edgnelALT ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( 𝐷𝑈 ) = 0 ↔ ¬ ∃ 𝑒𝐸 𝑈𝑒 ) )

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdushgrfvedg.e 𝐸 = ( Edg ‘ 𝐺 )
3 vtxdushgrfvedg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
4 1 2 3 vtxdusgrfvedg ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) )
5 4 eqeq1d ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( 𝐷𝑈 ) = 0 ↔ ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) = 0 ) )
6 fvex ( Edg ‘ 𝐺 ) ∈ V
7 2 6 eqeltri 𝐸 ∈ V
8 7 rabex { 𝑒𝐸𝑈𝑒 } ∈ V
9 hasheq0 ( { 𝑒𝐸𝑈𝑒 } ∈ V → ( ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) = 0 ↔ { 𝑒𝐸𝑈𝑒 } = ∅ ) )
10 8 9 mp1i ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) = 0 ↔ { 𝑒𝐸𝑈𝑒 } = ∅ ) )
11 rabeq0 ( { 𝑒𝐸𝑈𝑒 } = ∅ ↔ ∀ 𝑒𝐸 ¬ 𝑈𝑒 )
12 ralnex ( ∀ 𝑒𝐸 ¬ 𝑈𝑒 ↔ ¬ ∃ 𝑒𝐸 𝑈𝑒 )
13 12 a1i ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ∀ 𝑒𝐸 ¬ 𝑈𝑒 ↔ ¬ ∃ 𝑒𝐸 𝑈𝑒 ) )
14 11 13 syl5bb ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( { 𝑒𝐸𝑈𝑒 } = ∅ ↔ ¬ ∃ 𝑒𝐸 𝑈𝑒 ) )
15 5 10 14 3bitrd ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( 𝐷𝑈 ) = 0 ↔ ¬ ∃ 𝑒𝐸 𝑈𝑒 ) )