Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdushgrfvedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxdushgrfvedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
vtxdushgrfvedg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
4 |
1 2 3
|
vtxdusgrfvedg |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ) ) |
6 |
|
fvex |
⊢ ( Edg ‘ 𝐺 ) ∈ V |
7 |
2 6
|
eqeltri |
⊢ 𝐸 ∈ V |
8 |
7
|
rabex |
⊢ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ V |
9 |
|
hasheq0 |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ) ) |
10 |
8 9
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ) ) |
11 |
|
rabeq0 |
⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ↔ ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ) |
12 |
|
ralnex |
⊢ ( ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) |
13 |
12
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
14 |
11 13
|
syl5bb |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
15 |
5 10 14
|
3bitrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |