Metamath Proof Explorer


Theorem vtxdusgrval

Description: The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses vtxdlfgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdlfgrval.i 𝐼 = ( iEdg ‘ 𝐺 )
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion vtxdusgrval ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdlfgrval.i 𝐼 = ( iEdg ‘ 𝐺 )
3 vtxdlfgrval.a 𝐴 = dom 𝐼
4 vtxdlfgrval.d 𝐷 = ( VtxDeg ‘ 𝐺 )
5 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
6 1 2 3 4 vtxdumgrval ( ( 𝐺 ∈ UMGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )
7 5 6 sylan ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( 𝐷𝑈 ) = ( ♯ ‘ { 𝑥𝐴𝑈 ∈ ( 𝐼𝑥 ) } ) )