Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdusgrval
Metamath Proof Explorer
Description: The value of the vertex degree function for a simple graph.
(Contributed by Alexander van der Vekens , 20-Dec-2017) (Revised by AV , 11-Dec-2020)
Ref
Expression
Hypotheses
vtxdlfgrval.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
vtxdlfgrval.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
vtxdlfgrval.a
⊢ 𝐴 = dom 𝐼
vtxdlfgrval.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion
vtxdusgrval
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) )
Proof
Step
Hyp
Ref
Expression
1
vtxdlfgrval.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
2
vtxdlfgrval.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
3
vtxdlfgrval.a
⊢ 𝐴 = dom 𝐼
4
vtxdlfgrval.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
5
usgrumgr
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
6
1 2 3 4
vtxdumgrval
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) )
7
5 6
sylan
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) )