| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdushgrfvedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdushgrfvedg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑈 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑈 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) | 
						
							| 6 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 8 | 1 6 7 | vtxdgval | ⊢ ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } ) ) ) | 
						
							| 10 | 1 2 | vtxdushgrfvedglem | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } ) ) | 
						
							| 11 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 12 | 11 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 13 | 12 | rabex | ⊢ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  ∈  V ) | 
						
							| 15 |  | eqid | ⊢ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  =  { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑒  =  { 𝑈 }  ↔  𝑐  =  { 𝑈 } ) ) | 
						
							| 17 | 16 | cbvrabv | ⊢ { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑈 } }  =  { 𝑐  ∈  𝐸  ∣  𝑐  =  { 𝑈 } } | 
						
							| 18 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 19 | 2 6 15 17 18 | ushgredgedgloop | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) : { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } –1-1-onto→ { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑈 } } ) | 
						
							| 20 | 14 19 | hasheqf1od | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑈 } } ) ) | 
						
							| 21 | 10 20 | oveq12d | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝑈 } } ) )  =  ( ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } )  +𝑒  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑈 } } ) ) ) | 
						
							| 22 | 5 9 21 | 3eqtrd | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } )  +𝑒  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑈 } } ) ) ) |