Metamath Proof Explorer


Theorem vtxvalsnop

Description: Degenerated case 2 for vertices: The set of vertices of a singleton containing an ordered pair with equal components is the singleton containing the component. (Contributed by AV, 24-Sep-2020) (Proof shortened by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses vtxvalsnop.b 𝐵 ∈ V
vtxvalsnop.g 𝐺 = { ⟨ 𝐵 , 𝐵 ⟩ }
Assertion vtxvalsnop ( Vtx ‘ 𝐺 ) = { 𝐵 }

Proof

Step Hyp Ref Expression
1 vtxvalsnop.b 𝐵 ∈ V
2 vtxvalsnop.g 𝐺 = { ⟨ 𝐵 , 𝐵 ⟩ }
3 2 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ { ⟨ 𝐵 , 𝐵 ⟩ } )
4 1 snopeqopsnid { ⟨ 𝐵 , 𝐵 ⟩ } = ⟨ { 𝐵 } , { 𝐵 } ⟩
5 4 fveq2i ( Vtx ‘ { ⟨ 𝐵 , 𝐵 ⟩ } ) = ( Vtx ‘ ⟨ { 𝐵 } , { 𝐵 } ⟩ )
6 snex { 𝐵 } ∈ V
7 6 6 opvtxfvi ( Vtx ‘ ⟨ { 𝐵 } , { 𝐵 } ⟩ ) = { 𝐵 }
8 3 5 7 3eqtri ( Vtx ‘ 𝐺 ) = { 𝐵 }