Step |
Hyp |
Ref |
Expression |
1 |
|
wallispi.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
2 |
|
wallispi.2 |
⊢ 𝑊 = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
5 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( 2 · 𝑛 ) ) / ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( 2 · 𝑛 ) ) / ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
8 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) |
9 |
1 5 6 7 8
|
wallispilem5 |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ⇝ 1 |
10 |
9
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ⇝ 1 ) |
11 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
12 |
|
picn |
⊢ π ∈ ℂ |
13 |
12
|
a1i |
⊢ ( ⊤ → π ∈ ℂ ) |
14 |
|
pire |
⊢ π ∈ ℝ |
15 |
|
pipos |
⊢ 0 < π |
16 |
14 15
|
gt0ne0ii |
⊢ π ≠ 0 |
17 |
16
|
a1i |
⊢ ( ⊤ → π ≠ 0 ) |
18 |
11 13 17
|
divcld |
⊢ ( ⊤ → ( 2 / π ) ∈ ℂ ) |
19 |
|
nnex |
⊢ ℕ ∈ V |
20 |
19
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V |
21 |
20
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V ) |
22 |
12
|
a1i |
⊢ ( 𝑛 ∈ ℕ → π ∈ ℂ ) |
23 |
22
|
halfcld |
⊢ ( 𝑛 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
24 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
24
|
biimpi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
28 |
26 27
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ) |
29 |
26
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑗 ) + 1 ) ) |
30 |
26 29
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) |
31 |
28 30
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
32 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℕ ) |
33 |
|
2cnd |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) |
34 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
35 |
33 34
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℂ ) |
36 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
37 |
35 36
|
subcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℂ ) |
38 |
|
1red |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) |
39 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
40 |
38 38
|
remulcld |
⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) ∈ ℝ ) |
41 |
|
2re |
⊢ 2 ∈ ℝ |
42 |
41
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ ) |
43 |
42 38
|
remulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ∈ ℝ ) |
44 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
45 |
42 44
|
remulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℝ ) |
46 |
|
1rp |
⊢ 1 ∈ ℝ+ |
47 |
46
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ+ ) |
48 |
|
1lt2 |
⊢ 1 < 2 |
49 |
48
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 1 < 2 ) |
50 |
38 42 47 49
|
ltmul1dd |
⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) < ( 2 · 1 ) ) |
51 |
|
0le2 |
⊢ 0 ≤ 2 |
52 |
51
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 0 ≤ 2 ) |
53 |
|
nnge1 |
⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) |
54 |
38 44 42 52 53
|
lemul2ad |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ≤ ( 2 · 𝑗 ) ) |
55 |
40 43 45 50 54
|
ltletrd |
⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) < ( 2 · 𝑗 ) ) |
56 |
39 55
|
eqbrtrrid |
⊢ ( 𝑗 ∈ ℕ → 1 < ( 2 · 𝑗 ) ) |
57 |
38 56
|
gtned |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ≠ 1 ) |
58 |
35 36 57
|
subne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ≠ 0 ) |
59 |
35 37 58
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
60 |
35 36
|
addcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
61 |
|
0red |
⊢ ( 𝑗 ∈ ℕ → 0 ∈ ℝ ) |
62 |
45 38
|
readdcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ ) |
63 |
47
|
rpgt0d |
⊢ ( 𝑗 ∈ ℕ → 0 < 1 ) |
64 |
|
2rp |
⊢ 2 ∈ ℝ+ |
65 |
64
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ+ ) |
66 |
|
nnrp |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ+ ) |
67 |
65 66
|
rpmulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℝ+ ) |
68 |
38 67
|
ltaddrp2d |
⊢ ( 𝑗 ∈ ℕ → 1 < ( ( 2 · 𝑗 ) + 1 ) ) |
69 |
61 38 62 63 68
|
lttrd |
⊢ ( 𝑗 ∈ ℕ → 0 < ( ( 2 · 𝑗 ) + 1 ) ) |
70 |
61 69
|
gtned |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ≠ 0 ) |
71 |
35 60 70
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
72 |
59 71
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
73 |
32 72
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
74 |
1 31 32 73
|
fvmptd3 |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 𝐹 ‘ 𝑗 ) = ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
75 |
64
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ+ ) |
76 |
32
|
nnrpd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℝ+ ) |
77 |
75 76
|
rpmulcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑗 ) ∈ ℝ+ ) |
78 |
45 38
|
resubcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ ) |
79 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
80 |
38 45 38 56
|
ltsub1dd |
⊢ ( 𝑗 ∈ ℕ → ( 1 − 1 ) < ( ( 2 · 𝑗 ) − 1 ) ) |
81 |
79 80
|
eqbrtrrid |
⊢ ( 𝑗 ∈ ℕ → 0 < ( ( 2 · 𝑗 ) − 1 ) ) |
82 |
78 81
|
elrpd |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ+ ) |
83 |
32 82
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ+ ) |
84 |
77 83
|
rpdivcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℝ+ ) |
85 |
41
|
a1i |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ ) |
86 |
32
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℝ ) |
87 |
85 86
|
remulcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
88 |
75
|
rpge0d |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ 2 ) |
89 |
76
|
rpge0d |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ 𝑗 ) |
90 |
85 86 88 89
|
mulge0d |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ ( 2 · 𝑗 ) ) |
91 |
87 90
|
ge0p1rpd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ+ ) |
92 |
77 91
|
rpdivcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℝ+ ) |
93 |
84 92
|
rpmulcld |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℝ+ ) |
94 |
74 93
|
eqeltrd |
⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ+ ) |
95 |
94
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ+ ) |
96 |
|
rpmulcl |
⊢ ( ( 𝑗 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) → ( 𝑗 · 𝑤 ) ∈ ℝ+ ) |
97 |
96
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑗 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) → ( 𝑗 · 𝑤 ) ∈ ℝ+ ) |
98 |
25 95 97
|
seqcl |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℝ+ ) |
99 |
98
|
rpcnd |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
100 |
98
|
rpne0d |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) |
101 |
99 100
|
reccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ∈ ℂ ) |
102 |
23 101
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ ℂ ) |
103 |
7 102
|
fmpti |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℂ |
104 |
103
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
105 |
104
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
106 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) |
107 |
106
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℝ+ ↔ ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ+ ) ) |
108 |
107 98
|
vtoclga |
⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ+ ) |
109 |
108
|
rpcnd |
⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
110 |
108
|
rpne0d |
⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ≠ 0 ) |
111 |
36 109 110
|
divrecd |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) = ( 1 · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
112 |
12
|
a1i |
⊢ ( 𝑗 ∈ ℕ → π ∈ ℂ ) |
113 |
65
|
rpne0d |
⊢ ( 𝑗 ∈ ℕ → 2 ≠ 0 ) |
114 |
16
|
a1i |
⊢ ( 𝑗 ∈ ℕ → π ≠ 0 ) |
115 |
33 112 113 114
|
divcan6d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 / π ) · ( π / 2 ) ) = 1 ) |
116 |
115
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ → 1 = ( ( 2 / π ) · ( π / 2 ) ) ) |
117 |
116
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( 1 · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( ( ( 2 / π ) · ( π / 2 ) ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
118 |
33 112 114
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 / π ) ∈ ℂ ) |
119 |
112
|
halfcld |
⊢ ( 𝑗 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
120 |
109 110
|
reccld |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ∈ ℂ ) |
121 |
118 119 120
|
mulassd |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 / π ) · ( π / 2 ) ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
122 |
111 117 121
|
3eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
123 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
124 |
106
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
126 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
127 |
108
|
rpreccld |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ∈ ℝ+ ) |
128 |
123 125 126 127
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
129 |
|
eqidd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
130 |
125
|
oveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
131 |
119 120
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℂ ) |
132 |
129 130 126 131
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
134 |
122 128 133
|
3eqtr4d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
135 |
134
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
136 |
3 4 10 18 21 105 135
|
climmulc2 |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ⇝ ( ( 2 / π ) · 1 ) ) |
137 |
|
2cn |
⊢ 2 ∈ ℂ |
138 |
137 12 16
|
divcli |
⊢ ( 2 / π ) ∈ ℂ |
139 |
138
|
mulid1i |
⊢ ( ( 2 / π ) · 1 ) = ( 2 / π ) |
140 |
136 139
|
breqtrdi |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ⇝ ( 2 / π ) ) |
141 |
|
2ne0 |
⊢ 2 ≠ 0 |
142 |
137 12 141 16
|
divne0i |
⊢ ( 2 / π ) ≠ 0 |
143 |
142
|
a1i |
⊢ ( ⊤ → ( 2 / π ) ≠ 0 ) |
144 |
128 120
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
145 |
109 110
|
recne0d |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ≠ 0 ) |
146 |
128 145
|
eqnetrd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ≠ 0 ) |
147 |
|
nelsn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ≠ 0 → ¬ ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ { 0 } ) |
148 |
146 147
|
syl |
⊢ ( 𝑗 ∈ ℕ → ¬ ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ { 0 } ) |
149 |
144 148
|
eldifd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
150 |
149
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
151 |
109 110
|
recrecd |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) |
152 |
123 125 126 120
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
153 |
152
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) = ( 1 / ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
154 |
106 2 98
|
fvmpt3 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑊 ‘ 𝑗 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) |
155 |
151 153 154
|
3eqtr4rd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑊 ‘ 𝑗 ) = ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) ) |
156 |
155
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝑊 ‘ 𝑗 ) = ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) ) |
157 |
19
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ∈ V |
158 |
2 157
|
eqeltri |
⊢ 𝑊 ∈ V |
159 |
158
|
a1i |
⊢ ( ⊤ → 𝑊 ∈ V ) |
160 |
3 4 140 143 150 156 159
|
climrec |
⊢ ( ⊤ → 𝑊 ⇝ ( 1 / ( 2 / π ) ) ) |
161 |
160
|
mptru |
⊢ 𝑊 ⇝ ( 1 / ( 2 / π ) ) |
162 |
|
recdiv |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( 1 / ( 2 / π ) ) = ( π / 2 ) ) |
163 |
137 141 12 16 162
|
mp4an |
⊢ ( 1 / ( 2 / π ) ) = ( π / 2 ) |
164 |
161 163
|
breqtri |
⊢ 𝑊 ⇝ ( π / 2 ) |