| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispi2.1 |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 2 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 3 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
| 4 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
| 5 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 6 |
4 5
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 7 |
6 3
|
addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 8 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 9 |
8
|
biimpi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 10 |
|
eqidd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → 𝑘 = 𝑚 ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( 2 · 𝑘 ) = ( 2 · 𝑚 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) ↑ 4 ) = ( ( 2 · 𝑚 ) ↑ 4 ) ) |
| 14 |
12
|
oveq1d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 15 |
12 14
|
oveq12d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) = ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) |
| 17 |
13 16
|
oveq12d |
⊢ ( ( 𝑚 ∈ ( 1 ... 𝑛 ) ∧ 𝑘 = 𝑚 ) → ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) = ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ) |
| 18 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) |
| 19 |
|
2cnd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℂ ) |
| 20 |
18
|
nncnd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℂ ) |
| 21 |
19 20
|
mulcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 22 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 23 |
22
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 4 ∈ ℕ0 ) |
| 24 |
21 23
|
expcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) ↑ 4 ) ∈ ℂ ) |
| 25 |
|
1cnd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ∈ ℂ ) |
| 26 |
21 25
|
subcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℂ ) |
| 27 |
21 26
|
mulcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ∈ ℂ ) |
| 28 |
27
|
sqcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ∈ ℂ ) |
| 29 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 30 |
29
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ≠ 0 ) |
| 31 |
18
|
nnne0d |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ≠ 0 ) |
| 32 |
19 20 30 31
|
mulne0d |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ≠ 0 ) |
| 33 |
|
1red |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ∈ ℝ ) |
| 34 |
|
2re |
⊢ 2 ∈ ℝ |
| 35 |
34
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ ) |
| 36 |
35 33
|
remulcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 1 ) ∈ ℝ ) |
| 37 |
18
|
nnred |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℝ ) |
| 38 |
35 37
|
remulcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ∈ ℝ ) |
| 39 |
|
1lt2 |
⊢ 1 < 2 |
| 40 |
39
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < 2 ) |
| 41 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 42 |
40 41
|
breqtrrdi |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < ( 2 · 1 ) ) |
| 43 |
|
0le2 |
⊢ 0 ≤ 2 |
| 44 |
43
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 0 ≤ 2 ) |
| 45 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 ≤ 𝑚 ) |
| 46 |
33 37 35 44 45
|
lemul2ad |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 1 ) ≤ ( 2 · 𝑚 ) ) |
| 47 |
33 36 38 42 46
|
ltletrd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 1 < ( 2 · 𝑚 ) ) |
| 48 |
33 47
|
gtned |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑚 ) ≠ 1 ) |
| 49 |
21 25 48
|
subne0d |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) − 1 ) ≠ 0 ) |
| 50 |
21 26 32 49
|
mulne0d |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ≠ 0 ) |
| 51 |
|
2z |
⊢ 2 ∈ ℤ |
| 52 |
51
|
a1i |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℤ ) |
| 53 |
27 50 52
|
expne0d |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ≠ 0 ) |
| 54 |
24 28 53
|
divcld |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 55 |
10 17 18 54
|
fvmptd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) = ( ( ( 2 · 𝑚 ) ↑ 4 ) / ( ( ( 2 · 𝑚 ) · ( ( 2 · 𝑚 ) − 1 ) ) ↑ 2 ) ) ) |
| 56 |
55 54
|
eqeltrd |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 58 |
|
mulcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑚 · 𝑤 ) ∈ ℂ ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑚 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( 𝑚 · 𝑤 ) ∈ ℂ ) |
| 60 |
9 57 59
|
seqcl |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 61 |
|
2nn |
⊢ 2 ∈ ℕ |
| 62 |
61
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 63 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 64 |
62 63
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 65 |
64
|
peano2nnd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 66 |
65
|
nnne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 67 |
3 7 60 66
|
div32d |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) = ( 1 · ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 68 |
60 7 66
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 69 |
68
|
mullidd |
⊢ ( 𝑛 ∈ ℕ → ( 1 · ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 70 |
|
wallispi2lem2 |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) = ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 72 |
67 69 71
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 73 |
72
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 74 |
|
wallispi2lem1 |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) |
| 75 |
74
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) ↑ 4 ) / ( ( ( 2 · 𝑘 ) · ( ( 2 · 𝑘 ) − 1 ) ) ↑ 2 ) ) ) ) ‘ 𝑛 ) ) ) |
| 76 |
73 75 1
|
3eqtr4ri |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ‘ 𝑛 ) ) |
| 77 |
2 76
|
wallispi |
⊢ 𝑉 ⇝ ( π / 2 ) |