Step |
Hyp |
Ref |
Expression |
1 |
|
wallispilem4.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
2 |
|
wallispilem4.2 |
⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑧 ) ↑ 𝑛 ) d 𝑧 ) |
3 |
|
wallispilem4.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
4 |
|
wallispilem4.4 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 2 · 𝑥 ) = ( 2 · 1 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 1 ) ) ) |
7 |
5
|
fvoveq1d |
⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) |
8 |
6 7
|
oveq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 1 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) |
12 |
8 11
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
15 |
13
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 2 · 𝑥 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) ) |
23 |
21
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
24 |
22 23
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
28 |
24 27
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 2 · 𝑥 ) = ( 2 · 𝑛 ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑛 ) ) ) |
31 |
29
|
fvoveq1d |
⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) |
32 |
30 31
|
oveq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
36 |
32 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
37 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
38 |
37
|
fveq2i |
⊢ ( 𝐼 ‘ ( 2 · 1 ) ) = ( 𝐼 ‘ 2 ) |
39 |
37
|
oveq1i |
⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
40 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
41 |
39 40
|
eqtri |
⊢ ( ( 2 · 1 ) + 1 ) = 3 |
42 |
41
|
fveq2i |
⊢ ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) = ( 𝐼 ‘ 3 ) |
43 |
38 42
|
oveq12i |
⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) |
44 |
|
2z |
⊢ 2 ∈ ℤ |
45 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
46 |
44 45
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
47 |
2
|
wallispilem2 |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) ) |
48 |
47
|
simp3i |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) |
49 |
46 48
|
ax-mp |
⊢ ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) |
50 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
51 |
50
|
oveq1i |
⊢ ( ( 2 − 1 ) / 2 ) = ( 1 / 2 ) |
52 |
|
2cn |
⊢ 2 ∈ ℂ |
53 |
52
|
subidi |
⊢ ( 2 − 2 ) = 0 |
54 |
53
|
fveq2i |
⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = ( 𝐼 ‘ 0 ) |
55 |
47
|
simp1i |
⊢ ( 𝐼 ‘ 0 ) = π |
56 |
54 55
|
eqtri |
⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = π |
57 |
51 56
|
oveq12i |
⊢ ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) = ( ( 1 / 2 ) · π ) |
58 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
59 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
60 |
|
picn |
⊢ π ∈ ℂ |
61 |
|
div32 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ π ∈ ℂ ) → ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) ) |
62 |
58 59 60 61
|
mp3an |
⊢ ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) |
63 |
|
2ne0 |
⊢ 2 ≠ 0 |
64 |
60 52 63
|
divcli |
⊢ ( π / 2 ) ∈ ℂ |
65 |
64
|
mulid2i |
⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
66 |
62 65
|
eqtri |
⊢ ( ( 1 / 2 ) · π ) = ( π / 2 ) |
67 |
49 57 66
|
3eqtri |
⊢ ( 𝐼 ‘ 2 ) = ( π / 2 ) |
68 |
|
3z |
⊢ 3 ∈ ℤ |
69 |
|
2re |
⊢ 2 ∈ ℝ |
70 |
|
3re |
⊢ 3 ∈ ℝ |
71 |
|
2lt3 |
⊢ 2 < 3 |
72 |
69 70 71
|
ltleii |
⊢ 2 ≤ 3 |
73 |
|
eluz2 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3 ) ) |
74 |
44 68 72 73
|
mpbir3an |
⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
75 |
2
|
wallispilem2 |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) ) |
76 |
75
|
simp3i |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) |
77 |
74 76
|
ax-mp |
⊢ ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
78 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
79 |
78
|
eqcomi |
⊢ 2 = ( 3 − 1 ) |
80 |
79
|
oveq1i |
⊢ ( 2 / 3 ) = ( ( 3 − 1 ) / 3 ) |
81 |
|
3cn |
⊢ 3 ∈ ℂ |
82 |
81 52 58 40
|
subaddrii |
⊢ ( 3 − 2 ) = 1 |
83 |
82
|
fveq2i |
⊢ ( 𝐼 ‘ ( 3 − 2 ) ) = ( 𝐼 ‘ 1 ) |
84 |
47
|
simp2i |
⊢ ( 𝐼 ‘ 1 ) = 2 |
85 |
83 84
|
eqtr2i |
⊢ 2 = ( 𝐼 ‘ ( 3 − 2 ) ) |
86 |
80 85
|
oveq12i |
⊢ ( ( 2 / 3 ) · 2 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
87 |
|
3ne0 |
⊢ 3 ≠ 0 |
88 |
52 81 87
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
89 |
88 52
|
mulcomi |
⊢ ( ( 2 / 3 ) · 2 ) = ( 2 · ( 2 / 3 ) ) |
90 |
77 86 89
|
3eqtr2i |
⊢ ( 𝐼 ‘ 3 ) = ( 2 · ( 2 / 3 ) ) |
91 |
67 90
|
oveq12i |
⊢ ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) = ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) |
92 |
|
1z |
⊢ 1 ∈ ℤ |
93 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
94 |
92 93
|
ax-mp |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
95 |
|
1nn |
⊢ 1 ∈ ℕ |
96 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) |
97 |
96 37
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = 2 ) |
98 |
96
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
99 |
37
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
100 |
99 50
|
eqtri |
⊢ ( ( 2 · 1 ) − 1 ) = 1 |
101 |
98 100
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = 1 ) |
102 |
97 101
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( 2 / 1 ) ) |
103 |
52
|
div1i |
⊢ ( 2 / 1 ) = 2 |
104 |
102 103
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = 2 ) |
105 |
97
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = ( 2 + 1 ) ) |
106 |
105 40
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = 3 ) |
107 |
97 106
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( 2 / 3 ) ) |
108 |
104 107
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( 2 / 3 ) ) ) |
109 |
|
ovex |
⊢ ( 2 · ( 2 / 3 ) ) ∈ V |
110 |
108 1 109
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) ) |
111 |
95 110
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) |
112 |
94 111
|
eqtr2i |
⊢ ( 2 · ( 2 / 3 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) |
113 |
112
|
oveq2i |
⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
114 |
52 88
|
mulcli |
⊢ ( 2 · ( 2 / 3 ) ) ∈ ℂ |
115 |
111 114
|
eqeltri |
⊢ ( 𝐹 ‘ 1 ) ∈ ℂ |
116 |
94 115
|
eqeltri |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ∈ ℂ |
117 |
52 81 63 87
|
divne0i |
⊢ ( 2 / 3 ) ≠ 0 |
118 |
52 88 63 117
|
mulne0i |
⊢ ( 2 · ( 2 / 3 ) ) ≠ 0 |
119 |
112 118
|
eqnetrri |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ≠ 0 |
120 |
64 116 119
|
divreci |
⊢ ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
121 |
113 120
|
eqtri |
⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
122 |
43 91 121
|
3eqtri |
⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
123 |
|
oveq2 |
⊢ ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
124 |
123
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
125 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℂ ) |
126 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
127 |
58
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℂ ) |
128 |
125 126 127
|
adddid |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) ) |
129 |
125
|
mulid1d |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 1 ) = 2 ) |
130 |
129
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
131 |
128 130
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
132 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) ) |
133 |
125 126
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℂ ) |
134 |
133 125 127
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) ) |
135 |
50
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 2 − 1 ) = 1 ) |
136 |
135
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
137 |
132 134 136
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
138 |
137
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ) |
139 |
138
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
140 |
78
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 3 − 1 ) = 2 ) |
141 |
140
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
142 |
81
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℂ ) |
143 |
133 142 127
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) ) |
144 |
141 143 131
|
3eqtr4d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
145 |
144
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
146 |
145
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
147 |
139 146
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
148 |
44
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℤ ) |
149 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
150 |
149
|
peano2zd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℤ ) |
151 |
148 150
|
zmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ) |
152 |
69
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ ) |
153 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
154 |
|
1red |
⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℝ ) |
155 |
153 154
|
readdcld |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ ) |
156 |
|
0le2 |
⊢ 0 ≤ 2 |
157 |
156
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ 2 ) |
158 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
159 |
158
|
nn0ge0d |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ 𝑦 ) |
160 |
154 153
|
addge02d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 𝑦 ↔ 1 ≤ ( 𝑦 + 1 ) ) ) |
161 |
159 160
|
mpbid |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ ( 𝑦 + 1 ) ) |
162 |
152 155 157 161
|
lemulge11d |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) |
163 |
44
|
eluz1i |
⊢ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) ) |
164 |
151 162 163
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
165 |
2 164
|
itgsinexp |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) ) |
166 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) ) |
167 |
133 125
|
pncand |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) = ( 2 · 𝑦 ) ) |
168 |
166 167
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( 2 · 𝑦 ) ) |
169 |
168
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
170 |
169
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
171 |
165 170
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
172 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) ) |
173 |
133 125 127
|
addassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) = ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) ) |
174 |
40
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 2 + 1 ) = 3 ) |
175 |
174
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) = ( ( 2 · 𝑦 ) + 3 ) ) |
176 |
172 173 175
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( 2 · 𝑦 ) + 3 ) ) |
177 |
176
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) ) |
178 |
148 149
|
zmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℤ ) |
179 |
68
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℤ ) |
180 |
178 179
|
zaddcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ) |
181 |
152 153
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ ) |
182 |
70
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ ) |
183 |
181 182
|
readdcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ ) |
184 |
|
nnge1 |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ 𝑦 ) |
185 |
152 153 157 184
|
lemulge11d |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · 𝑦 ) ) |
186 |
|
0re |
⊢ 0 ∈ ℝ |
187 |
|
3pos |
⊢ 0 < 3 |
188 |
186 70 187
|
ltleii |
⊢ 0 ≤ 3 |
189 |
181 182
|
addge01d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 3 ↔ ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
190 |
188 189
|
mpbii |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
191 |
152 181 183 185 190
|
letrd |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
192 |
44
|
eluz1i |
⊢ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
193 |
180 191 192
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ) |
194 |
2 193
|
itgsinexp |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
195 |
177 194
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
196 |
171 195
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
197 |
133 127
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℂ ) |
198 |
126 127
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℂ ) |
199 |
125 198
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℂ ) |
200 |
63
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ≠ 0 ) |
201 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
202 |
201
|
nnne0d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ≠ 0 ) |
203 |
125 198 200 202
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 0 ) |
204 |
197 199 203
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
205 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
206 |
205
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℕ0 ) |
207 |
206 158
|
nn0mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℕ0 ) |
208 |
2
|
wallispilem3 |
⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℝ+ ) |
209 |
208
|
rpcnd |
⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
210 |
207 209
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
211 |
133 142
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℂ ) |
212 |
|
0red |
⊢ ( 𝑦 ∈ ℕ → 0 ∈ ℝ ) |
213 |
|
2pos |
⊢ 0 < 2 |
214 |
213
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 0 < 2 ) |
215 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
216 |
152 153 214 215
|
mulgt0d |
⊢ ( 𝑦 ∈ ℕ → 0 < ( 2 · 𝑦 ) ) |
217 |
182 187
|
jctir |
⊢ ( 𝑦 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
218 |
|
elrp |
⊢ ( 3 ∈ ℝ+ ↔ ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
219 |
217 218
|
sylibr |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ+ ) |
220 |
181 219
|
ltaddrpd |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) < ( ( 2 · 𝑦 ) + 3 ) ) |
221 |
212 181 183 216 220
|
lttrd |
⊢ ( 𝑦 ∈ ℕ → 0 < ( ( 2 · 𝑦 ) + 3 ) ) |
222 |
221
|
gt0ne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ≠ 0 ) |
223 |
199 211 222
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
224 |
199 211 203 222
|
divne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
225 |
180 148
|
zsubcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ) |
226 |
183 152
|
subge0d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ↔ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
227 |
191 226
|
mpbird |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) |
228 |
|
elnn0z |
⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ↔ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) |
229 |
225 227 228
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ) |
230 |
2
|
wallispilem3 |
⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
231 |
229 230
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
232 |
231
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) |
233 |
223 224 232
|
jca31 |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) |
234 |
|
divmuldiv |
⊢ ( ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
235 |
204 210 233 234
|
syl21anc |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
236 |
147 196 235
|
3eqtr4d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
237 |
133 142 125
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) ) |
238 |
82
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 3 − 2 ) = 1 ) |
239 |
238
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
240 |
237 239
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
241 |
240
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
242 |
241
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
243 |
242
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
244 |
236 243
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
245 |
244
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
246 |
|
elnnuz |
⊢ ( 𝑦 ∈ ℕ ↔ 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
247 |
246
|
biimpi |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
248 |
|
seqp1 |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) |
249 |
247 248
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) |
250 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
251 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) |
252 |
250 251
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ) |
253 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) |
254 |
250 253
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
255 |
252 254
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
256 |
152 155
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ ) |
257 |
256 154
|
resubcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ∈ ℝ ) |
258 |
|
1lt2 |
⊢ 1 < 2 |
259 |
258
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 1 < 2 ) |
260 |
|
nnrp |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) |
261 |
154 260
|
ltaddrp2d |
⊢ ( 𝑦 ∈ ℕ → 1 < ( 𝑦 + 1 ) ) |
262 |
152 155 259 261
|
mulgt1d |
⊢ ( 𝑦 ∈ ℕ → 1 < ( 2 · ( 𝑦 + 1 ) ) ) |
263 |
154 262
|
gtned |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 1 ) |
264 |
199 127 263
|
subne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ≠ 0 ) |
265 |
256 257 264
|
redivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ∈ ℝ ) |
266 |
176 183
|
eqeltrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ∈ ℝ ) |
267 |
176 222
|
eqnetrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ≠ 0 ) |
268 |
256 266 267
|
redivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ∈ ℝ ) |
269 |
265 268
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ∈ ℝ ) |
270 |
1 255 201 269
|
fvmptd3 |
⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
271 |
270
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
272 |
249 271
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
273 |
272
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) |
274 |
273
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) ) |
275 |
137
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ) |
276 |
176
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
277 |
275 276
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
278 |
277
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
279 |
278
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
280 |
279
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) ) |
281 |
|
elfznn |
⊢ ( 𝑤 ∈ ( 1 ... 𝑦 ) → 𝑤 ∈ ℕ ) |
282 |
281
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → 𝑤 ∈ ℕ ) |
283 |
|
oveq2 |
⊢ ( 𝑘 = 𝑤 → ( 2 · 𝑘 ) = ( 2 · 𝑤 ) ) |
284 |
283
|
oveq1d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑤 ) − 1 ) ) |
285 |
283 284
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ) |
286 |
283
|
oveq1d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑤 ) + 1 ) ) |
287 |
283 286
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) |
288 |
285 287
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
289 |
|
id |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℕ ) |
290 |
|
2rp |
⊢ 2 ∈ ℝ+ |
291 |
290
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ+ ) |
292 |
|
nnrp |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ+ ) |
293 |
291 292
|
rpmulcld |
⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ+ ) |
294 |
69
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ ) |
295 |
|
nnre |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ ) |
296 |
294 295
|
remulcld |
⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ ) |
297 |
|
1red |
⊢ ( 𝑤 ∈ ℕ → 1 ∈ ℝ ) |
298 |
296 297
|
resubcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ ) |
299 |
|
nnge1 |
⊢ ( 𝑤 ∈ ℕ → 1 ≤ 𝑤 ) |
300 |
|
nncn |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) |
301 |
300
|
mulid2d |
⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) = 𝑤 ) |
302 |
297 294 292
|
ltmul1d |
⊢ ( 𝑤 ∈ ℕ → ( 1 < 2 ↔ ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) ) |
303 |
258 302
|
mpbii |
⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) |
304 |
301 303
|
eqbrtrrd |
⊢ ( 𝑤 ∈ ℕ → 𝑤 < ( 2 · 𝑤 ) ) |
305 |
297 295 296 299 304
|
lelttrd |
⊢ ( 𝑤 ∈ ℕ → 1 < ( 2 · 𝑤 ) ) |
306 |
297 296
|
posdifd |
⊢ ( 𝑤 ∈ ℕ → ( 1 < ( 2 · 𝑤 ) ↔ 0 < ( ( 2 · 𝑤 ) − 1 ) ) ) |
307 |
305 306
|
mpbid |
⊢ ( 𝑤 ∈ ℕ → 0 < ( ( 2 · 𝑤 ) − 1 ) ) |
308 |
298 307
|
elrpd |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ+ ) |
309 |
293 308
|
rpdivcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ∈ ℝ+ ) |
310 |
156
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ 2 ) |
311 |
292
|
rpge0d |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ 𝑤 ) |
312 |
294 295 310 311
|
mulge0d |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ ( 2 · 𝑤 ) ) |
313 |
296 312
|
ge0p1rpd |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) + 1 ) ∈ ℝ+ ) |
314 |
293 313
|
rpdivcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ∈ ℝ+ ) |
315 |
309 314
|
rpmulcld |
⊢ ( 𝑤 ∈ ℕ → ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ∈ ℝ+ ) |
316 |
1 288 289 315
|
fvmptd3 |
⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
317 |
316 315
|
eqeltrd |
⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
318 |
282 317
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
319 |
|
rpmulcl |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) |
320 |
319
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) |
321 |
247 318 320
|
seqcl |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℝ+ ) |
322 |
321
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ) |
323 |
290
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ+ ) |
324 |
153 159
|
ge0p1rpd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ+ ) |
325 |
323 324
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ+ ) |
326 |
152 153 157 159
|
mulge0d |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( 2 · 𝑦 ) ) |
327 |
181 326
|
ge0p1rpd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℝ+ ) |
328 |
325 327
|
rpdivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ∈ ℝ+ ) |
329 |
323 260
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ+ ) |
330 |
329 219
|
rpaddcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ+ ) |
331 |
325 330
|
rpdivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℝ+ ) |
332 |
328 331
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℝ+ ) |
333 |
332
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) |
334 |
|
divdiv1 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
335 |
127 322 333 334
|
syl3anc |
⊢ ( 𝑦 ∈ ℕ → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
336 |
335
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) = ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
337 |
336
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
338 |
64
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
339 |
321
|
rpcnd |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
340 |
321
|
rpne0d |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) |
341 |
339 340
|
reccld |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ∈ ℂ ) |
342 |
332
|
rpcnd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
343 |
332
|
rpne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) |
344 |
338 341 342 343
|
divassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
345 |
137 264
|
eqnetrrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ≠ 0 ) |
346 |
199 197 199 211 345 222
|
divmuldivd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
347 |
346
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
348 |
338 341
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
349 |
199 199
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
350 |
197 211
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
351 |
199 199 203 203
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ≠ 0 ) |
352 |
197 211 345 222
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
353 |
348 349 350 351 352
|
divdiv2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
354 |
348 350 349 351
|
divassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
355 |
353 354
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
356 |
197 199 199 211 203 222 203
|
divdivdivd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
357 |
356
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
358 |
357
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
359 |
347 355 358
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
360 |
337 344 359
|
3eqtr2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
361 |
60
|
a1i |
⊢ ( 𝑦 ∈ ℕ → π ∈ ℂ ) |
362 |
361
|
halfcld |
⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
363 |
362 341
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
364 |
204 223 224
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
365 |
363 364
|
mulcomd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
366 |
280 360 365
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
367 |
274 366
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
368 |
367
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
369 |
124 245 368
|
3eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
370 |
369
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
371 |
12 20 28 36 122 370
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
372 |
371
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
373 |
372 3 4
|
3eqtr4i |
⊢ 𝐺 = 𝐻 |