Step |
Hyp |
Ref |
Expression |
1 |
|
wallispilem5.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
2 |
|
wallispilem5.2 |
⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) |
3 |
|
wallispilem5.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
4 |
|
wallispilem5.4 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
5 |
|
wallispilem5.5 |
⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) |
6 |
1 2 3 4
|
wallispilem4 |
⊢ 𝐺 = 𝐻 |
7 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
8 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
9 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
10 |
|
2ne0 |
⊢ 2 ≠ 0 |
11 |
10
|
a1i |
⊢ ( ⊤ → 2 ≠ 0 ) |
12 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
13 |
5 9 11 12
|
clim1fr1 |
⊢ ( ⊤ → 𝐿 ⇝ 1 ) |
14 |
|
nnex |
⊢ ℕ ∈ V |
15 |
14
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ V |
16 |
3 15
|
eqeltri |
⊢ 𝐺 ∈ V |
17 |
16
|
a1i |
⊢ ( ⊤ → 𝐺 ∈ V ) |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ0 ) |
20 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
21 |
19 20
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ0 ) |
22 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℕ0 ) |
24 |
21 23
|
nn0addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
25 |
24
|
nn0red |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
26 |
21
|
nn0red |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
27 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
28 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
29 |
10
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
30 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
31 |
27 28 29 30
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ≠ 0 ) |
32 |
25 26 31
|
redivcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ∈ ℝ ) |
33 |
5 32
|
fmpti |
⊢ 𝐿 : ℕ ⟶ ℝ |
34 |
33
|
a1i |
⊢ ( ⊤ → 𝐿 : ℕ ⟶ ℝ ) |
35 |
34
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐿 ‘ 𝑘 ) ∈ ℝ ) |
36 |
2
|
wallispilem3 |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
37 |
21 36
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
38 |
37
|
rpred |
⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑛 ) ) ∈ ℝ ) |
39 |
2
|
wallispilem3 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
40 |
24 39
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ+ ) |
41 |
38 40
|
rerpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℝ ) |
42 |
3 41
|
fmpti |
⊢ 𝐺 : ℕ ⟶ ℝ |
43 |
42
|
a1i |
⊢ ( ⊤ → 𝐺 : ℕ ⟶ ℝ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
45 |
18
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℕ0 ) |
46 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
47 |
45 46
|
nn0mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ0 ) |
48 |
2
|
wallispilem3 |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ+ ) |
49 |
47 48
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ+ ) |
50 |
49
|
rpred |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ∈ ℝ ) |
51 |
|
2nn |
⊢ 2 ∈ ℕ |
52 |
51
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℕ ) |
53 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
54 |
52 53
|
nnmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ ) |
55 |
|
nnm1nn0 |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 ) |
56 |
54 55
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 ) |
57 |
2
|
wallispilem3 |
⊢ ( ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ+ ) |
58 |
56 57
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ+ ) |
59 |
58
|
rpred |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℝ ) |
60 |
22
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℕ0 ) |
61 |
47 60
|
nn0addcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
62 |
2
|
wallispilem3 |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
63 |
61 62
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
64 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
65 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
66 |
64 65
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
67 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) |
68 |
66 67
|
npcand |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
69 |
68
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) = ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
70 |
2 56
|
wallispilem1 |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) ≤ ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
71 |
69 70
|
eqbrtrrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑘 ) ) ≤ ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
72 |
50 59 63 71
|
lediv1dd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
73 |
66 67
|
addcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
74 |
10
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
75 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
76 |
64 65 74 75
|
mulne0d |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≠ 0 ) |
77 |
73 66 76
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ∈ ℂ ) |
78 |
63
|
rpcnd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
79 |
63
|
rpne0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ≠ 0 ) |
80 |
77 78 79
|
divcan4d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
81 |
|
2re |
⊢ 2 ∈ ℝ |
82 |
81
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
83 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
84 |
82 83
|
remulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
85 |
|
1red |
⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) |
86 |
84 85
|
readdcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
87 |
45
|
nn0ge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
88 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
89 |
82 83 87 88
|
lemulge11d |
⊢ ( 𝑘 ∈ ℕ → 2 ≤ ( 2 · 𝑘 ) ) |
90 |
84
|
ltp1d |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) < ( ( 2 · 𝑘 ) + 1 ) ) |
91 |
82 84 86 89 90
|
lelttrd |
⊢ ( 𝑘 ∈ ℕ → 2 < ( ( 2 · 𝑘 ) + 1 ) ) |
92 |
82 86 91
|
ltled |
⊢ ( 𝑘 ∈ ℕ → 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
93 |
45
|
nn0zd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℤ ) |
94 |
61
|
nn0zd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ ) |
95 |
|
eluz |
⊢ ( ( 2 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ ) → ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) ) |
96 |
93 94 95
|
syl2anc |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 2 ≤ ( ( 2 · 𝑘 ) + 1 ) ) ) |
97 |
92 96
|
mpbird |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
98 |
2 97
|
itgsinexp |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) ) ) |
99 |
66 67
|
pncand |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
100 |
99
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
101 |
|
1e2m1 |
⊢ 1 = ( 2 − 1 ) |
102 |
101
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 1 = ( 2 − 1 ) ) |
103 |
102
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑘 ) − ( 2 − 1 ) ) ) |
104 |
66 64 67
|
subsub3d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − ( 2 − 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) |
105 |
103 104
|
eqtr2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
106 |
105
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
107 |
100 106
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑘 ) + 1 ) − 2 ) ) ) = ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
108 |
98 107
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
109 |
108
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) |
110 |
54
|
peano2nnd |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
111 |
110
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
112 |
66 73 111
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
113 |
58
|
rpcnd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℂ ) |
114 |
77 112 113
|
mulassd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) |
115 |
73 66 111 76
|
divcan6d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = 1 ) |
116 |
115
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 1 · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
117 |
113
|
mulid2d |
⊢ ( 𝑘 ∈ ℕ → ( 1 · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
118 |
116 117
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
119 |
109 114 118
|
3eqtr2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
120 |
119
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) · ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
121 |
80 120
|
eqtr3d |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) = ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) − 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
122 |
72 121
|
breqtrrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
123 |
49 63
|
rpdivcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℝ+ ) |
124 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
125 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) |
126 |
2 125
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐼 |
127 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 2 · 𝑘 ) |
128 |
126 127
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( 2 · 𝑘 ) ) |
129 |
|
nfcv |
⊢ Ⅎ 𝑛 / |
130 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 2 · 𝑘 ) + 1 ) |
131 |
126 130
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) |
132 |
128 129 131
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
133 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
134 |
133
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐼 ‘ ( 2 · 𝑛 ) ) = ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
135 |
133
|
fvoveq1d |
⊢ ( 𝑛 = 𝑘 → ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
136 |
134 135
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
137 |
124 132 136 3
|
fvmptf |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℝ+ ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
138 |
123 137
|
mpdan |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
139 |
5
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) ) |
140 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) |
141 |
140
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
142 |
141
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
143 |
142 141
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
144 |
139 143 53 77
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐿 ‘ 𝑘 ) = ( ( ( 2 · 𝑘 ) + 1 ) / ( 2 · 𝑘 ) ) ) |
145 |
122 138 144
|
3brtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
146 |
145
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐿 ‘ 𝑘 ) ) |
147 |
78 79
|
dividd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = 1 ) |
148 |
63
|
rpred |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
149 |
2 47
|
wallispilem1 |
⊢ ( 𝑘 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 𝐼 ‘ ( 2 · 𝑘 ) ) ) |
150 |
148 50 63 149
|
lediv1dd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ≤ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
151 |
147 150
|
eqbrtrrd |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( ( 𝐼 ‘ ( 2 · 𝑘 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
152 |
151 138
|
breqtrrd |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( 𝐺 ‘ 𝑘 ) ) |
153 |
152
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( 𝐺 ‘ 𝑘 ) ) |
154 |
7 8 13 17 35 44 146 153
|
climsqz2 |
⊢ ( ⊤ → 𝐺 ⇝ 1 ) |
155 |
154
|
mptru |
⊢ 𝐺 ⇝ 1 |
156 |
6 155
|
eqbrtrri |
⊢ 𝐻 ⇝ 1 |