Metamath Proof Explorer


Theorem watfvalN

Description: The W atoms function. (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses watomfval.a 𝐴 = ( Atoms ‘ 𝐾 )
watomfval.p 𝑃 = ( ⊥𝑃𝐾 )
watomfval.w 𝑊 = ( WAtoms ‘ 𝐾 )
Assertion watfvalN ( 𝐾𝐵𝑊 = ( 𝑑𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) ) )

Proof

Step Hyp Ref Expression
1 watomfval.a 𝐴 = ( Atoms ‘ 𝐾 )
2 watomfval.p 𝑃 = ( ⊥𝑃𝐾 )
3 watomfval.w 𝑊 = ( WAtoms ‘ 𝐾 )
4 elex ( 𝐾𝐵𝐾 ∈ V )
5 fveq2 ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) )
6 5 1 eqtr4di ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 )
7 fveq2 ( 𝑘 = 𝐾 → ( ⊥𝑃𝑘 ) = ( ⊥𝑃𝐾 ) )
8 7 fveq1d ( 𝑘 = 𝐾 → ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) = ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) )
9 6 8 difeq12d ( 𝑘 = 𝐾 → ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) = ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) )
10 6 9 mpteq12dv ( 𝑘 = 𝐾 → ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) ) = ( 𝑑𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) ) )
11 df-watsN WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) ) )
12 10 11 1 mptfvmpt ( 𝐾 ∈ V → ( WAtoms ‘ 𝐾 ) = ( 𝑑𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) ) )
13 3 12 syl5eq ( 𝐾 ∈ V → 𝑊 = ( 𝑑𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) ) )
14 4 13 syl ( 𝐾𝐵𝑊 = ( 𝑑𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝑑 } ) ) ) )