Step |
Hyp |
Ref |
Expression |
1 |
|
watomfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
watomfval.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
watomfval.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
4 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( ⊥𝑃 ‘ 𝑘 ) = ( ⊥𝑃 ‘ 𝐾 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) |
9 |
6 8
|
difeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) = ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) |
10 |
6 9
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ) = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ) |
11 |
|
df-watsN |
⊢ WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ) ) |
12 |
10 11 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( WAtoms ‘ 𝐾 ) = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ) |
13 |
3 12
|
syl5eq |
⊢ ( 𝐾 ∈ V → 𝑊 = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ) |
14 |
4 13
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝑊 = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ) |