Step |
Hyp |
Ref |
Expression |
1 |
|
watomfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
watomfval.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
watomfval.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
4 |
1 2 3
|
watfvalN |
⊢ ( 𝐾 ∈ 𝐵 → 𝑊 = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ) |
5 |
4
|
fveq1d |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝑊 ‘ 𝐷 ) = ( ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ‘ 𝐷 ) ) |
6 |
|
sneq |
⊢ ( 𝑑 = 𝐷 → { 𝑑 } = { 𝐷 } ) |
7 |
6
|
fveq2d |
⊢ ( 𝑑 = 𝐷 → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) |
8 |
7
|
difeq2d |
⊢ ( 𝑑 = 𝐷 → ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) = ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) |
9 |
|
eqid |
⊢ ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) = ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) |
10 |
1
|
fvexi |
⊢ 𝐴 ∈ V |
11 |
10
|
difexi |
⊢ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ∈ V |
12 |
8 9 11
|
fvmpt |
⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑑 ∈ 𝐴 ↦ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝑑 } ) ) ) ‘ 𝐷 ) = ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) |
13 |
5 12
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑊 ‘ 𝐷 ) = ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) |