Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wdomd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
wdomd.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | ||
Assertion | wdomd | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdomd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
2 | wdomd.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | |
3 | abrexexg | ⊢ ( 𝐵 ∈ 𝑊 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ∈ V ) | |
4 | 1 3 | syl | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ∈ V ) |
5 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) |
6 | 5 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) |
7 | ssab | ⊢ ( 𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) | |
8 | 6 7 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ) |
9 | 4 8 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
10 | 9 1 2 | wdom2d | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |