Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wdomd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| wdomd.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | ||
| Assertion | wdomd | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wdomd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 2 | wdomd.o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) | |
| 3 | abrexexg | ⊢ ( 𝐵 ∈ 𝑊 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ∈ V ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ∈ V ) | 
| 5 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) | 
| 6 | 5 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) | 
| 7 | ssab | ⊢ ( 𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 } ) | 
| 9 | 4 8 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) | 
| 10 | 9 1 2 | wdom2d | ⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |