Metamath Proof Explorer


Theorem wdomd

Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)

Ref Expression
Hypotheses wdomd.b ( 𝜑𝐵𝑊 )
wdomd.o ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵 𝑥 = 𝑋 )
Assertion wdomd ( 𝜑𝐴* 𝐵 )

Proof

Step Hyp Ref Expression
1 wdomd.b ( 𝜑𝐵𝑊 )
2 wdomd.o ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵 𝑥 = 𝑋 )
3 abrexexg ( 𝐵𝑊 → { 𝑥 ∣ ∃ 𝑦𝐵 𝑥 = 𝑋 } ∈ V )
4 1 3 syl ( 𝜑 → { 𝑥 ∣ ∃ 𝑦𝐵 𝑥 = 𝑋 } ∈ V )
5 2 ex ( 𝜑 → ( 𝑥𝐴 → ∃ 𝑦𝐵 𝑥 = 𝑋 ) )
6 5 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴 → ∃ 𝑦𝐵 𝑥 = 𝑋 ) )
7 ssab ( 𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦𝐵 𝑥 = 𝑋 } ↔ ∀ 𝑥 ( 𝑥𝐴 → ∃ 𝑦𝐵 𝑥 = 𝑋 ) )
8 6 7 sylibr ( 𝜑𝐴 ⊆ { 𝑥 ∣ ∃ 𝑦𝐵 𝑥 = 𝑋 } )
9 4 8 ssexd ( 𝜑𝐴 ∈ V )
10 9 1 2 wdom2d ( 𝜑𝐴* 𝐵 )