Metamath Proof Explorer


Theorem wdomen1

Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion wdomen1 ( 𝐴𝐵 → ( 𝐴* 𝐶𝐵* 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ensym ( 𝐴𝐵𝐵𝐴 )
2 endom ( 𝐵𝐴𝐵𝐴 )
3 domwdom ( 𝐵𝐴𝐵* 𝐴 )
4 1 2 3 3syl ( 𝐴𝐵𝐵* 𝐴 )
5 wdomtr ( ( 𝐵* 𝐴𝐴* 𝐶 ) → 𝐵* 𝐶 )
6 4 5 sylan ( ( 𝐴𝐵𝐴* 𝐶 ) → 𝐵* 𝐶 )
7 endom ( 𝐴𝐵𝐴𝐵 )
8 domwdom ( 𝐴𝐵𝐴* 𝐵 )
9 7 8 syl ( 𝐴𝐵𝐴* 𝐵 )
10 wdomtr ( ( 𝐴* 𝐵𝐵* 𝐶 ) → 𝐴* 𝐶 )
11 9 10 sylan ( ( 𝐴𝐵𝐵* 𝐶 ) → 𝐴* 𝐶 )
12 6 11 impbida ( 𝐴𝐵 → ( 𝐴* 𝐶𝐵* 𝐶 ) )