Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomen1 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 2 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 3 | domwdom | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴 ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴 ) |
| 5 | wdomtr | ⊢ ( ( 𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶 ) → 𝐵 ≼* 𝐶 ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶 ) → 𝐵 ≼* 𝐶 ) |
| 7 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 8 | domwdom | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵 ) |
| 10 | wdomtr | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶 ) → 𝐴 ≼* 𝐶 ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶 ) → 𝐴 ≼* 𝐶 ) |
| 12 | 6 11 | impbida | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶 ) ) |