Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) |
2 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) |
3 |
|
funforn |
⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
4 |
2 3
|
sylib |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
6 |
|
fof |
⊢ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ) |
7 |
5 6
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ) |
8 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) |
9 |
|
inss1 |
⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 |
10 |
8 9
|
eqsstri |
⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
11 |
|
simp2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
12 |
|
ssexg |
⊢ ( ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom ( 𝐹 ↾ 𝐴 ) ∈ V ) |
13 |
10 11 12
|
sylancr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → dom ( 𝐹 ↾ 𝐴 ) ∈ V ) |
14 |
|
simp3 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) |
15 |
1 14
|
eqeltrrid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ∈ 𝑊 ) |
16 |
|
fex2 |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ∈ V ∧ ran ( 𝐹 ↾ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
17 |
7 13 15 16
|
syl3anc |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
18 |
|
fowdom |
⊢ ( ( ( 𝐹 ↾ 𝐴 ) ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) → ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ) |
19 |
17 5 18
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ) |
20 |
|
ssdomg |
⊢ ( 𝐴 ∈ 𝑉 → ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) ) |
21 |
10 20
|
mpi |
⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) |
22 |
|
domwdom |
⊢ ( dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
25 |
|
wdomtr |
⊢ ( ( ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
26 |
19 24 25
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
27 |
1 26
|
eqbrtrid |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 “ 𝐴 ) ≼* 𝐴 ) |