Metamath Proof Explorer


Theorem wdomimag

Description: A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wdomimag ( ( Fun 𝐹𝐴𝑉 ) → ( 𝐹𝐴 ) ≼* 𝐴 )

Proof

Step Hyp Ref Expression
1 funimaexg ( ( Fun 𝐹𝐴𝑉 ) → ( 𝐹𝐴 ) ∈ V )
2 wdomima2g ( ( Fun 𝐹𝐴𝑉 ∧ ( 𝐹𝐴 ) ∈ V ) → ( 𝐹𝐴 ) ≼* 𝐴 )
3 1 2 mpd3an3 ( ( Fun 𝐹𝐴𝑉 ) → ( 𝐹𝐴 ) ≼* 𝐴 )