| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brwdom | ⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  ≼*  𝐵  ↔  ( 𝐴  =  ∅  ∨  ∃ 𝑥 𝑥 : 𝐵 –onto→ 𝐴 ) ) ) | 
						
							| 2 |  | 0domg | ⊢ ( 𝐵  ∈  dom  card  →  ∅  ≼  𝐵 ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≼  𝐵  ↔  ∅  ≼  𝐵 ) ) | 
						
							| 4 | 2 3 | syl5ibrcom | ⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  =  ∅  →  𝐴  ≼  𝐵 ) ) | 
						
							| 5 |  | fodomnum | ⊢ ( 𝐵  ∈  dom  card  →  ( 𝑥 : 𝐵 –onto→ 𝐴  →  𝐴  ≼  𝐵 ) ) | 
						
							| 6 | 5 | exlimdv | ⊢ ( 𝐵  ∈  dom  card  →  ( ∃ 𝑥 𝑥 : 𝐵 –onto→ 𝐴  →  𝐴  ≼  𝐵 ) ) | 
						
							| 7 | 4 6 | jaod | ⊢ ( 𝐵  ∈  dom  card  →  ( ( 𝐴  =  ∅  ∨  ∃ 𝑥 𝑥 : 𝐵 –onto→ 𝐴 )  →  𝐴  ≼  𝐵 ) ) | 
						
							| 8 | 1 7 | sylbid | ⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  ≼*  𝐵  →  𝐴  ≼  𝐵 ) ) | 
						
							| 9 |  | domwdom | ⊢ ( 𝐴  ≼  𝐵  →  𝐴  ≼*  𝐵 ) | 
						
							| 10 | 8 9 | impbid1 | ⊢ ( 𝐵  ∈  dom  card  →  ( 𝐴  ≼*  𝐵  ↔  𝐴  ≼  𝐵 ) ) |