| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relwdom | ⊢ Rel   ≼* | 
						
							| 2 | 1 | brrelex2i | ⊢ ( 𝑋  ≼*  𝑌  →  𝑌  ∈  V ) | 
						
							| 3 | 2 | pwexd | ⊢ ( 𝑋  ≼*  𝑌  →  𝒫  𝑌  ∈  V ) | 
						
							| 4 |  | 0ss | ⊢ ∅  ⊆  𝑌 | 
						
							| 5 | 4 | sspwi | ⊢ 𝒫  ∅  ⊆  𝒫  𝑌 | 
						
							| 6 |  | ssdomg | ⊢ ( 𝒫  𝑌  ∈  V  →  ( 𝒫  ∅  ⊆  𝒫  𝑌  →  𝒫  ∅  ≼  𝒫  𝑌 ) ) | 
						
							| 7 | 3 5 6 | mpisyl | ⊢ ( 𝑋  ≼*  𝑌  →  𝒫  ∅  ≼  𝒫  𝑌 ) | 
						
							| 8 |  | pweq | ⊢ ( 𝑋  =  ∅  →  𝒫  𝑋  =  𝒫  ∅ ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝑋  =  ∅  →  ( 𝒫  𝑋  ≼  𝒫  𝑌  ↔  𝒫  ∅  ≼  𝒫  𝑌 ) ) | 
						
							| 10 | 7 9 | imbitrrid | ⊢ ( 𝑋  =  ∅  →  ( 𝑋  ≼*  𝑌  →  𝒫  𝑋  ≼  𝒫  𝑌 ) ) | 
						
							| 11 |  | brwdomn0 | ⊢ ( 𝑋  ≠  ∅  →  ( 𝑋  ≼*  𝑌  ↔  ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) | 
						
							| 12 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 13 |  | fopwdom | ⊢ ( ( 𝑧  ∈  V  ∧  𝑧 : 𝑌 –onto→ 𝑋 )  →  𝒫  𝑋  ≼  𝒫  𝑌 ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( 𝑧 : 𝑌 –onto→ 𝑋  →  𝒫  𝑋  ≼  𝒫  𝑌 ) | 
						
							| 15 | 14 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋  →  𝒫  𝑋  ≼  𝒫  𝑌 ) | 
						
							| 16 | 11 15 | biimtrdi | ⊢ ( 𝑋  ≠  ∅  →  ( 𝑋  ≼*  𝑌  →  𝒫  𝑋  ≼  𝒫  𝑌 ) ) | 
						
							| 17 | 10 16 | pm2.61ine | ⊢ ( 𝑋  ≼*  𝑌  →  𝒫  𝑋  ≼  𝒫  𝑌 ) |