Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | wdomref | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg | ⊢ ( 𝑋 ∈ 𝑉 → ( I ↾ 𝑋 ) ∈ V ) | |
2 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
3 | f1ofo | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) | |
4 | 2 3 | ax-mp | ⊢ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 |
5 | fowdom | ⊢ ( ( ( I ↾ 𝑋 ) ∈ V ∧ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) → 𝑋 ≼* 𝑋 ) | |
6 | 1 4 5 | sylancl | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋 ) |