Metamath Proof Explorer


Theorem wdomref

Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion wdomref ( 𝑋𝑉𝑋* 𝑋 )

Proof

Step Hyp Ref Expression
1 resiexg ( 𝑋𝑉 → ( I ↾ 𝑋 ) ∈ V )
2 f1oi ( I ↾ 𝑋 ) : 𝑋1-1-onto𝑋
3 f1ofo ( ( I ↾ 𝑋 ) : 𝑋1-1-onto𝑋 → ( I ↾ 𝑋 ) : 𝑋onto𝑋 )
4 2 3 ax-mp ( I ↾ 𝑋 ) : 𝑋onto𝑋
5 fowdom ( ( ( I ↾ 𝑋 ) ∈ V ∧ ( I ↾ 𝑋 ) : 𝑋onto𝑋 ) → 𝑋* 𝑋 )
6 1 4 5 sylancl ( 𝑋𝑉𝑋* 𝑋 )