Step |
Hyp |
Ref |
Expression |
1 |
|
relwdom |
⊢ Rel ≼* |
2 |
1
|
brrelex2i |
⊢ ( 𝑌 ≼* 𝑍 → 𝑍 ∈ V ) |
3 |
2
|
adantl |
⊢ ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) → 𝑍 ∈ V ) |
4 |
|
0wdom |
⊢ ( 𝑍 ∈ V → ∅ ≼* 𝑍 ) |
5 |
|
breq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 ≼* 𝑍 ↔ ∅ ≼* 𝑍 ) ) |
6 |
4 5
|
syl5ibrcom |
⊢ ( 𝑍 ∈ V → ( 𝑋 = ∅ → 𝑋 ≼* 𝑍 ) ) |
7 |
3 6
|
syl |
⊢ ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) → ( 𝑋 = ∅ → 𝑋 ≼* 𝑍 ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ≼* 𝑌 ) |
9 |
|
brwdomn0 |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
11 |
8 10
|
mpbid |
⊢ ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) → ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) |
12 |
|
simpllr |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑌 ≼* 𝑍 ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≠ ∅ ) |
14 |
|
dm0rn0 |
⊢ ( dom 𝑧 = ∅ ↔ ran 𝑧 = ∅ ) |
15 |
14
|
necon3bii |
⊢ ( dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅ ) |
16 |
15
|
a1i |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ( dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅ ) ) |
17 |
|
fof |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → 𝑧 : 𝑌 ⟶ 𝑋 ) |
18 |
17
|
fdmd |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → dom 𝑧 = 𝑌 ) |
19 |
18
|
neeq1d |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ( dom 𝑧 ≠ ∅ ↔ 𝑌 ≠ ∅ ) ) |
20 |
|
forn |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ran 𝑧 = 𝑋 ) |
21 |
20
|
neeq1d |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ( ran 𝑧 ≠ ∅ ↔ 𝑋 ≠ ∅ ) ) |
22 |
16 19 21
|
3bitr3rd |
⊢ ( 𝑧 : 𝑌 –onto→ 𝑋 → ( 𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅ ) ) |
23 |
22
|
adantl |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → ( 𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅ ) ) |
24 |
13 23
|
mpbid |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑌 ≠ ∅ ) |
25 |
|
brwdomn0 |
⊢ ( 𝑌 ≠ ∅ → ( 𝑌 ≼* 𝑍 ↔ ∃ 𝑦 𝑦 : 𝑍 –onto→ 𝑌 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → ( 𝑌 ≼* 𝑍 ↔ ∃ 𝑦 𝑦 : 𝑍 –onto→ 𝑌 ) ) |
27 |
12 26
|
mpbid |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑦 𝑦 : 𝑍 –onto→ 𝑌 ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
|
vex |
⊢ 𝑦 ∈ V |
30 |
28 29
|
coex |
⊢ ( 𝑧 ∘ 𝑦 ) ∈ V |
31 |
|
foco |
⊢ ( ( 𝑧 : 𝑌 –onto→ 𝑋 ∧ 𝑦 : 𝑍 –onto→ 𝑌 ) → ( 𝑧 ∘ 𝑦 ) : 𝑍 –onto→ 𝑋 ) |
32 |
|
fowdom |
⊢ ( ( ( 𝑧 ∘ 𝑦 ) ∈ V ∧ ( 𝑧 ∘ 𝑦 ) : 𝑍 –onto→ 𝑋 ) → 𝑋 ≼* 𝑍 ) |
33 |
30 31 32
|
sylancr |
⊢ ( ( 𝑧 : 𝑌 –onto→ 𝑋 ∧ 𝑦 : 𝑍 –onto→ 𝑌 ) → 𝑋 ≼* 𝑍 ) |
34 |
33
|
adantl |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑧 : 𝑌 –onto→ 𝑋 ∧ 𝑦 : 𝑍 –onto→ 𝑌 ) ) → 𝑋 ≼* 𝑍 ) |
35 |
34
|
expr |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → ( 𝑦 : 𝑍 –onto→ 𝑌 → 𝑋 ≼* 𝑍 ) ) |
36 |
35
|
exlimdv |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → ( ∃ 𝑦 𝑦 : 𝑍 –onto→ 𝑌 → 𝑋 ≼* 𝑍 ) ) |
37 |
27 36
|
mpd |
⊢ ( ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) ∧ 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑋 ≼* 𝑍 ) |
38 |
11 37
|
exlimddv |
⊢ ( ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ≼* 𝑍 ) |
39 |
38
|
ex |
⊢ ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≼* 𝑍 ) ) |
40 |
7 39
|
pm2.61dne |
⊢ ( ( 𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍 ) → 𝑋 ≼* 𝑍 ) |