Metamath Proof Explorer


Theorem we0

Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997)

Ref Expression
Assertion we0 𝑅 We ∅

Proof

Step Hyp Ref Expression
1 fr0 𝑅 Fr ∅
2 so0 𝑅 Or ∅
3 df-we ( 𝑅 We ∅ ↔ ( 𝑅 Fr ∅ ∧ 𝑅 Or ∅ ) )
4 1 2 3 mpbir2an 𝑅 We ∅