Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wecmpep | ⊢ ( ( E We 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weso | ⊢ ( E We 𝐴 → E Or 𝐴 ) | |
| 2 | solin | ⊢ ( ( E Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) | |
| 3 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 4 | biid | ⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) | |
| 5 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 6 | 3 4 5 | 3orbi123i | ⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 7 | 2 6 | sylib | ⊢ ( ( E Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 8 | 1 7 | sylan | ⊢ ( ( E We 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |