| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac8b |
⊢ ( 𝐴 ∈ dom card → ∃ 𝑟 𝑟 We 𝐴 ) |
| 2 |
|
weso |
⊢ ( 𝑟 We 𝐴 → 𝑟 Or 𝐴 ) |
| 3 |
|
vex |
⊢ 𝑟 ∈ V |
| 4 |
|
soex |
⊢ ( ( 𝑟 Or 𝐴 ∧ 𝑟 ∈ V ) → 𝐴 ∈ V ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝑟 We 𝐴 → 𝐴 ∈ V ) |
| 6 |
5
|
exlimiv |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ V ) |
| 7 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 8 |
|
weeq2 |
⊢ ( ∪ 𝒫 𝐴 = 𝐴 → ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃ 𝑟 𝑟 We 𝐴 ) |
| 11 |
10
|
biimpri |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ) |
| 12 |
|
pwexg |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) |
| 13 |
|
dfac8c |
⊢ ( 𝒫 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 15 |
|
dfac8a |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → 𝐴 ∈ dom card ) ) |
| 16 |
14 15
|
syld |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card ) ) |
| 17 |
6 11 16
|
sylc |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card ) |
| 18 |
1 17
|
impbii |
⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 ) |