Step |
Hyp |
Ref |
Expression |
1 |
|
dfac8b |
⊢ ( 𝐴 ∈ dom card → ∃ 𝑟 𝑟 We 𝐴 ) |
2 |
|
weso |
⊢ ( 𝑟 We 𝐴 → 𝑟 Or 𝐴 ) |
3 |
|
vex |
⊢ 𝑟 ∈ V |
4 |
|
soex |
⊢ ( ( 𝑟 Or 𝐴 ∧ 𝑟 ∈ V ) → 𝐴 ∈ V ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝑟 We 𝐴 → 𝐴 ∈ V ) |
6 |
5
|
exlimiv |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ V ) |
7 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
8 |
|
weeq2 |
⊢ ( ∪ 𝒫 𝐴 = 𝐴 → ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃ 𝑟 𝑟 We 𝐴 ) |
11 |
10
|
biimpri |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ) |
12 |
|
pwexg |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) |
13 |
|
dfac8c |
⊢ ( 𝒫 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
15 |
|
dfac8a |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → 𝐴 ∈ dom card ) ) |
16 |
14 15
|
syld |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card ) ) |
17 |
6 11 16
|
sylc |
⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card ) |
18 |
1 17
|
impbii |
⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 ) |