Metamath Proof Explorer


Theorem ween

Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ween ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 )

Proof

Step Hyp Ref Expression
1 dfac8b ( 𝐴 ∈ dom card → ∃ 𝑟 𝑟 We 𝐴 )
2 weso ( 𝑟 We 𝐴𝑟 Or 𝐴 )
3 vex 𝑟 ∈ V
4 soex ( ( 𝑟 Or 𝐴𝑟 ∈ V ) → 𝐴 ∈ V )
5 2 3 4 sylancl ( 𝑟 We 𝐴𝐴 ∈ V )
6 5 exlimiv ( ∃ 𝑟 𝑟 We 𝐴𝐴 ∈ V )
7 unipw 𝒫 𝐴 = 𝐴
8 weeq2 ( 𝒫 𝐴 = 𝐴 → ( 𝑟 We 𝒫 𝐴𝑟 We 𝐴 ) )
9 7 8 ax-mp ( 𝑟 We 𝒫 𝐴𝑟 We 𝐴 )
10 9 exbii ( ∃ 𝑟 𝑟 We 𝒫 𝐴 ↔ ∃ 𝑟 𝑟 We 𝐴 )
11 10 biimpri ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑟 𝑟 We 𝒫 𝐴 )
12 pwexg ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V )
13 dfac8c ( 𝒫 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We 𝒫 𝐴 → ∃ 𝑓𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
14 12 13 syl ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We 𝒫 𝐴 → ∃ 𝑓𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) ) )
15 dfac8a ( 𝐴 ∈ V → ( ∃ 𝑓𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓𝑥 ) ∈ 𝑥 ) → 𝐴 ∈ dom card ) )
16 14 15 syld ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We 𝒫 𝐴𝐴 ∈ dom card ) )
17 6 11 16 sylc ( ∃ 𝑟 𝑟 We 𝐴𝐴 ∈ dom card )
18 1 17 impbii ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 )