Step |
Hyp |
Ref |
Expression |
1 |
|
wess |
⊢ ( 𝐵 ⊆ 𝐴 → ( E We 𝐴 → E We 𝐵 ) ) |
2 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
3 |
|
ineq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝑥 ) = ( 𝐵 ∩ 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∩ 𝑥 ) = ∅ ↔ ( 𝐵 ∩ 𝑦 ) = ∅ ) ) |
5 |
4
|
rspcev |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) = ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
6 |
5
|
ex |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐵 ∩ 𝑦 ) = ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
7 |
6
|
adantl |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) = ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
8 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 |
9 |
|
wefr |
⊢ ( E We 𝐵 → E Fr 𝐵 ) |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
10
|
inex2 |
⊢ ( 𝐵 ∩ 𝑦 ) ∈ V |
12 |
11
|
epfrc |
⊢ ( ( E Fr 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) |
13 |
9 12
|
syl3an1 |
⊢ ( ( E We 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) |
14 |
13
|
3exp |
⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
15 |
8 14
|
mpi |
⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) |
16 |
|
rexin |
⊢ ( ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) |
17 |
15 16
|
syl6ib |
⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
18 |
17
|
adantr |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
19 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝑥 ) ) |
20 |
|
df-3an |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) |
21 |
|
3anrot |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
22 |
20 21
|
bitr3i |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
23 |
|
wetrep |
⊢ ( ( E We 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ) |
24 |
23
|
expd |
⊢ ( ( E We 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
25 |
22 24
|
sylan2b |
⊢ ( ( E We 𝐵 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
26 |
25
|
exp44 |
⊢ ( E We 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) ) |
27 |
26
|
imp |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) |
28 |
27
|
com34 |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) |
29 |
28
|
impd |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) |
30 |
19 29
|
syl5bi |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) |
31 |
30
|
imp4a |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ) ) |
32 |
31
|
com23 |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) ) |
33 |
32
|
ralrimdv |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ∀ 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) 𝑧 ∈ 𝑦 ) ) |
34 |
|
dfss3 |
⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) 𝑧 ∈ 𝑦 ) |
35 |
33 34
|
syl6ibr |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ) ) |
36 |
|
dfss |
⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) ) |
37 |
|
in32 |
⊢ ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) |
38 |
37
|
eqeq2i |
⊢ ( ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) ) |
39 |
36 38
|
sylbb |
⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) ) |
40 |
39
|
eqeq1d |
⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( ( 𝐵 ∩ 𝑥 ) = ∅ ↔ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) |
41 |
40
|
biimprd |
⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
42 |
35 41
|
syl6 |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
43 |
42
|
expd |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) ) |
44 |
43
|
imp4a |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
45 |
44
|
reximdvai |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
46 |
18 45
|
syld |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
47 |
7 46
|
pm2.61dne |
⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
48 |
47
|
ex |
⊢ ( E We 𝐵 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
49 |
48
|
exlimdv |
⊢ ( E We 𝐵 → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
50 |
2 49
|
syl5bi |
⊢ ( E We 𝐵 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
51 |
1 50
|
syl6com |
⊢ ( E We 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
52 |
51
|
3imp |
⊢ ( ( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |