Metamath Proof Explorer


Theorem weinxp

Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997) (Revised by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion weinxp ( 𝑅 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 )

Proof

Step Hyp Ref Expression
1 frinxp ( 𝑅 Fr 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 )
2 soinxp ( 𝑅 Or 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 )
3 1 2 anbi12i ( ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ∧ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ) )
4 df-we ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) )
5 df-we ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ↔ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ∧ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Or 𝐴 ) )
6 3 4 5 3bitr4i ( 𝑅 We 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 )