Step |
Hyp |
Ref |
Expression |
1 |
|
isocnv |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
2 |
|
isocnv |
⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
3 |
1 2
|
anim12i |
⊢ ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) |
4 |
|
weisoeq |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( ◡ 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) |
5 |
3 4
|
sylan2 |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ◡ 𝐹 = ◡ 𝐺 ) |
6 |
|
simprl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
7 |
|
isof1o |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
8 |
|
f1orel |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐹 ) |
9 |
6 7 8
|
3syl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐹 ) |
10 |
|
simprr |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
11 |
|
isof1o |
⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) |
12 |
|
f1orel |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐺 ) |
13 |
10 11 12
|
3syl |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐺 ) |
14 |
|
cnveqb |
⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) |
15 |
9 13 14
|
syl2anc |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝐹 = 𝐺 ↔ ◡ 𝐹 = ◡ 𝐺 ) ) |
16 |
5 15
|
mpbird |
⊢ ( ( ( 𝑆 We 𝐵 ∧ 𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 ) |