Metamath Proof Explorer


Theorem weisoeq2

Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weisoeq2 ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 isocnv ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) )
2 isocnv ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) )
3 1 2 anim12i ( ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) → ( 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) )
4 weisoeq ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ∧ 𝐺 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐹 = 𝐺 )
5 3 4 sylan2 ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 )
6 simprl ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
7 isof1o ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
8 f1orel ( 𝐹 : 𝐴1-1-onto𝐵 → Rel 𝐹 )
9 6 7 8 3syl ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐹 )
10 simprr ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
11 isof1o ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐺 : 𝐴1-1-onto𝐵 )
12 f1orel ( 𝐺 : 𝐴1-1-onto𝐵 → Rel 𝐺 )
13 10 11 12 3syl ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → Rel 𝐺 )
14 cnveqb ( ( Rel 𝐹 ∧ Rel 𝐺 ) → ( 𝐹 = 𝐺 𝐹 = 𝐺 ) )
15 9 13 14 syl2anc ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → ( 𝐹 = 𝐺 𝐹 = 𝐺 ) )
16 5 15 mpbird ( ( ( 𝑆 We 𝐵𝑆 Se 𝐵 ) ∧ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) → 𝐹 = 𝐺 )