| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isocnv | ⊢ ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  ◡ 𝐹  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 ) ) | 
						
							| 2 |  | isocnv | ⊢ ( 𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  ◡ 𝐺  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 ) ) | 
						
							| 3 | 1 2 | anim12i | ⊢ ( ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) )  →  ( ◡ 𝐹  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 )  ∧  ◡ 𝐺  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 ) ) ) | 
						
							| 4 |  | weisoeq | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( ◡ 𝐹  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 )  ∧  ◡ 𝐺  Isom  𝑆 ,  𝑅 ( 𝐵 ,  𝐴 ) ) )  →  ◡ 𝐹  =  ◡ 𝐺 ) | 
						
							| 5 | 3 4 | sylan2 | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  ◡ 𝐹  =  ◡ 𝐺 ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 7 |  | isof1o | ⊢ ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 8 |  | f1orel | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  Rel  𝐹 ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  Rel  𝐹 ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 11 |  | isof1o | ⊢ ( 𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  𝐺 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 12 |  | f1orel | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  Rel  𝐺 ) | 
						
							| 13 | 10 11 12 | 3syl | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  Rel  𝐺 ) | 
						
							| 14 |  | cnveqb | ⊢ ( ( Rel  𝐹  ∧  Rel  𝐺 )  →  ( 𝐹  =  𝐺  ↔  ◡ 𝐹  =  ◡ 𝐺 ) ) | 
						
							| 15 | 9 13 14 | syl2anc | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  ( 𝐹  =  𝐺  ↔  ◡ 𝐹  =  ◡ 𝐺 ) ) | 
						
							| 16 | 5 15 | mpbird | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝐺  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝐹  =  𝐺 ) |