Metamath Proof Explorer


Theorem wemaplem1

Description: Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypothesis wemapso.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
Assertion wemaplem1 ( ( 𝑃𝑉𝑄𝑊 ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑎𝐴 ( ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ∧ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wemapso.t 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) }
2 fveq1 ( 𝑥 = 𝑃 → ( 𝑥𝑧 ) = ( 𝑃𝑧 ) )
3 fveq1 ( 𝑦 = 𝑄 → ( 𝑦𝑧 ) = ( 𝑄𝑧 ) )
4 2 3 breqan12d ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ↔ ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ) )
5 fveq1 ( 𝑥 = 𝑃 → ( 𝑥𝑤 ) = ( 𝑃𝑤 ) )
6 fveq1 ( 𝑦 = 𝑄 → ( 𝑦𝑤 ) = ( 𝑄𝑤 ) )
7 5 6 eqeqan12d ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ↔ ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) )
8 7 imbi2d ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) )
9 8 ralbidv ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ↔ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) )
10 4 9 anbi12d ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ↔ ( ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) ) )
11 10 rexbidv ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ↔ ∃ 𝑧𝐴 ( ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) ) )
12 fveq2 ( 𝑧 = 𝑎 → ( 𝑃𝑧 ) = ( 𝑃𝑎 ) )
13 fveq2 ( 𝑧 = 𝑎 → ( 𝑄𝑧 ) = ( 𝑄𝑎 ) )
14 12 13 breq12d ( 𝑧 = 𝑎 → ( ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ↔ ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ) )
15 breq2 ( 𝑧 = 𝑎 → ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑎 ) )
16 15 imbi1d ( 𝑧 = 𝑎 → ( ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ↔ ( 𝑤 𝑅 𝑎 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) )
17 16 ralbidv ( 𝑧 = 𝑎 → ( ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ↔ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) )
18 breq1 ( 𝑤 = 𝑏 → ( 𝑤 𝑅 𝑎𝑏 𝑅 𝑎 ) )
19 fveq2 ( 𝑤 = 𝑏 → ( 𝑃𝑤 ) = ( 𝑃𝑏 ) )
20 fveq2 ( 𝑤 = 𝑏 → ( 𝑄𝑤 ) = ( 𝑄𝑏 ) )
21 19 20 eqeq12d ( 𝑤 = 𝑏 → ( ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ↔ ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) )
22 18 21 imbi12d ( 𝑤 = 𝑏 → ( ( 𝑤 𝑅 𝑎 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) )
23 22 cbvralvw ( ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ↔ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) )
24 17 23 bitrdi ( 𝑧 = 𝑎 → ( ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ↔ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) )
25 14 24 anbi12d ( 𝑧 = 𝑎 → ( ( ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) ↔ ( ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ∧ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) ) )
26 25 cbvrexvw ( ∃ 𝑧𝐴 ( ( 𝑃𝑧 ) 𝑆 ( 𝑄𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃𝑤 ) = ( 𝑄𝑤 ) ) ) ↔ ∃ 𝑎𝐴 ( ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ∧ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) )
27 11 26 bitrdi ( ( 𝑥 = 𝑃𝑦 = 𝑄 ) → ( ∃ 𝑧𝐴 ( ( 𝑥𝑧 ) 𝑆 ( 𝑦𝑧 ) ∧ ∀ 𝑤𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ↔ ∃ 𝑎𝐴 ( ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ∧ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) ) )
28 27 1 brabga ( ( 𝑃𝑉𝑄𝑊 ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑎𝐴 ( ( 𝑃𝑎 ) 𝑆 ( 𝑄𝑎 ) ∧ ∀ 𝑏𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃𝑏 ) = ( 𝑄𝑏 ) ) ) ) )