Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
2 |
|
fveq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ‘ 𝑧 ) = ( 𝑃 ‘ 𝑧 ) ) |
3 |
|
fveq1 |
⊢ ( 𝑦 = 𝑄 → ( 𝑦 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑧 ) ) |
4 |
2 3
|
breqan12d |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ‘ 𝑤 ) = ( 𝑃 ‘ 𝑤 ) ) |
6 |
|
fveq1 |
⊢ ( 𝑦 = 𝑄 → ( 𝑦 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) |
7 |
5 6
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
10 |
4 9
|
anbi12d |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) ) |
11 |
10
|
rexbidv |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐴 ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑧 = 𝑎 → ( 𝑃 ‘ 𝑧 ) = ( 𝑃 ‘ 𝑎 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑧 = 𝑎 → ( 𝑄 ‘ 𝑧 ) = ( 𝑄 ‘ 𝑎 ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑧 = 𝑎 → ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ↔ ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑧 = 𝑎 → ( 𝑤 𝑅 𝑧 ↔ 𝑤 𝑅 𝑎 ) ) |
16 |
15
|
imbi1d |
⊢ ( 𝑧 = 𝑎 → ( ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ) |
18 |
|
breq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 𝑅 𝑎 ↔ 𝑏 𝑅 𝑎 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑏 → ( 𝑃 ‘ 𝑤 ) = ( 𝑃 ‘ 𝑏 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑤 = 𝑏 → ( 𝑄 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑏 ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ↔ ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑎 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) |
24 |
17 23
|
bitrdi |
⊢ ( 𝑧 = 𝑎 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
25 |
14 24
|
anbi12d |
⊢ ( 𝑧 = 𝑎 → ( ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ↔ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑃 ‘ 𝑧 ) 𝑆 ( 𝑄 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑃 ‘ 𝑤 ) = ( 𝑄 ‘ 𝑤 ) ) ) ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) |
27 |
11 26
|
bitrdi |
⊢ ( ( 𝑥 = 𝑃 ∧ 𝑦 = 𝑄 ) → ( ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |
28 |
27 1
|
brabga |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊 ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ∧ ∀ 𝑏 ∈ 𝐴 ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) ) ) ) |