| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 2 |  | wemaplem2.p | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 3 |  | wemaplem2.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 4 |  | wemaplem2.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 5 |  | wemaplem2.r | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 6 |  | wemaplem2.s | ⊢ ( 𝜑  →  𝑆  Po  𝐵 ) | 
						
							| 7 |  | wemaplem3.px | ⊢ ( 𝜑  →  𝑃 𝑇 𝑋 ) | 
						
							| 8 |  | wemaplem3.xq | ⊢ ( 𝜑  →  𝑋 𝑇 𝑄 ) | 
						
							| 9 | 1 | wemaplem1 | ⊢ ( ( 𝑃  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐴 ) )  →  ( 𝑃 𝑇 𝑋  ↔  ∃ 𝑎  ∈  𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) ) | 
						
							| 10 | 2 3 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 𝑇 𝑋  ↔  ∃ 𝑎  ∈  𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) | 
						
							| 12 | 1 | wemaplem1 | ⊢ ( ( 𝑋  ∈  ( 𝐵  ↑m  𝐴 )  ∧  𝑄  ∈  ( 𝐵  ↑m  𝐴 ) )  →  ( 𝑋 𝑇 𝑄  ↔  ∃ 𝑏  ∈  𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) ) | 
						
							| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 𝑇 𝑄  ↔  ∃ 𝑏  ∈  𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑏  ∈  𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) | 
						
							| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑃  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 16 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑋  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 17 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑄  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 18 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑅  Or  𝐴 ) | 
						
							| 19 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑆  Po  𝐵 ) | 
						
							| 20 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑎  ∈  𝐴 ) | 
						
							| 21 |  | simp2rl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) | 
						
							| 22 | 21 | 3expa | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) )  →  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) | 
						
							| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) | 
						
							| 25 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 26 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) | 
						
							| 27 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) | 
						
							| 28 | 1 15 16 17 18 19 20 22 24 25 26 27 | wemaplem2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) ) ) )  →  𝑃 𝑇 𝑄 ) | 
						
							| 29 | 28 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐴  ∧  ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) ) ) )  →  ( ∃ 𝑏  ∈  𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) )  →  𝑃 𝑇 𝑄 ) ) | 
						
							| 30 | 29 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑎  →  ( 𝑃 ‘ 𝑐 )  =  ( 𝑋 ‘ 𝑐 ) ) )  →  ( ∃ 𝑏  ∈  𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 )  ∧  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝑋 ‘ 𝑐 )  =  ( 𝑄 ‘ 𝑐 ) ) )  →  𝑃 𝑇 𝑄 ) ) ) | 
						
							| 31 | 11 14 30 | mp2d | ⊢ ( 𝜑  →  𝑃 𝑇 𝑄 ) |