Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
2 |
|
ssid |
⊢ ( 𝐵 ↑m 𝐴 ) ⊆ ( 𝐵 ↑m 𝐴 ) |
3 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑅 Or 𝐴 ) |
5 |
|
simpr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑆 Or 𝐵 ) |
6 |
|
vex |
⊢ 𝑎 ∈ V |
7 |
6
|
difexi |
⊢ ( 𝑎 ∖ 𝑏 ) ∈ V |
8 |
7
|
dmex |
⊢ dom ( 𝑎 ∖ 𝑏 ) ∈ V |
9 |
8
|
a1i |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ∈ V ) |
10 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑅 Fr 𝐴 ) |
12 |
|
difss |
⊢ ( 𝑎 ∖ 𝑏 ) ⊆ 𝑎 |
13 |
|
dmss |
⊢ ( ( 𝑎 ∖ 𝑏 ) ⊆ 𝑎 → dom ( 𝑎 ∖ 𝑏 ) ⊆ dom 𝑎 ) |
14 |
12 13
|
ax-mp |
⊢ dom ( 𝑎 ∖ 𝑏 ) ⊆ dom 𝑎 |
15 |
|
simprll |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ) |
16 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑎 : 𝐴 ⟶ 𝐵 ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 : 𝐴 ⟶ 𝐵 ) |
18 |
14 17
|
fssdm |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ⊆ 𝐴 ) |
19 |
|
simprr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 ≠ 𝑏 ) |
20 |
17
|
ffnd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑎 Fn 𝐴 ) |
21 |
|
simprlr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) |
22 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑏 : 𝐴 ⟶ 𝐵 ) |
23 |
21 22
|
syl |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 : 𝐴 ⟶ 𝐵 ) |
24 |
23
|
ffnd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → 𝑏 Fn 𝐴 ) |
25 |
|
fndmdifeq0 |
⊢ ( ( 𝑎 Fn 𝐴 ∧ 𝑏 Fn 𝐴 ) → ( dom ( 𝑎 ∖ 𝑏 ) = ∅ ↔ 𝑎 = 𝑏 ) ) |
26 |
20 24 25
|
syl2anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ( dom ( 𝑎 ∖ 𝑏 ) = ∅ ↔ 𝑎 = 𝑏 ) ) |
27 |
26
|
necon3bid |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ( dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ↔ 𝑎 ≠ 𝑏 ) ) |
28 |
19 27
|
mpbird |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ) |
29 |
|
fri |
⊢ ( ( ( dom ( 𝑎 ∖ 𝑏 ) ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( dom ( 𝑎 ∖ 𝑏 ) ⊆ 𝐴 ∧ dom ( 𝑎 ∖ 𝑏 ) ≠ ∅ ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) |
30 |
9 11 18 28 29
|
syl22anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ ( ( 𝑎 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑏 ∈ ( 𝐵 ↑m 𝐴 ) ) ∧ 𝑎 ≠ 𝑏 ) ) → ∃ 𝑐 ∈ dom ( 𝑎 ∖ 𝑏 ) ∀ 𝑑 ∈ dom ( 𝑎 ∖ 𝑏 ) ¬ 𝑑 𝑅 𝑐 ) |
31 |
1 2 4 5 30
|
wemapsolem |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐵 ↑m 𝐴 ) ) |