Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
2 |
|
wemapso2.u |
⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } |
3 |
1 2
|
wemapso2lem |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ 𝑍 ∈ V ) → 𝑇 Or 𝑈 ) |
4 |
3
|
expcom |
⊢ ( 𝑍 ∈ V → ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) ) |
5 |
|
so0 |
⊢ 𝑇 Or ∅ |
6 |
|
relfsupp |
⊢ Rel finSupp |
7 |
6
|
brrelex2i |
⊢ ( 𝑥 finSupp 𝑍 → 𝑍 ∈ V ) |
8 |
7
|
con3i |
⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍 ) |
9 |
8
|
ralrimivw |
⊢ ( ¬ 𝑍 ∈ V → ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
10 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
11 |
9 10
|
sylibr |
⊢ ( ¬ 𝑍 ∈ V → { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ) |
12 |
2 11
|
eqtrid |
⊢ ( ¬ 𝑍 ∈ V → 𝑈 = ∅ ) |
13 |
|
soeq2 |
⊢ ( 𝑈 = ∅ → ( 𝑇 Or 𝑈 ↔ 𝑇 Or ∅ ) ) |
14 |
12 13
|
syl |
⊢ ( ¬ 𝑍 ∈ V → ( 𝑇 Or 𝑈 ↔ 𝑇 Or ∅ ) ) |
15 |
5 14
|
mpbiri |
⊢ ( ¬ 𝑍 ∈ V → 𝑇 Or 𝑈 ) |
16 |
15
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) ) |
17 |
4 16
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) |