| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 2 |  | wemapsolem.1 | ⊢ 𝑈  ⊆  ( 𝐵  ↑m  𝐴 ) | 
						
							| 3 |  | wemapsolem.2 | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 4 |  | wemapsolem.3 | ⊢ ( 𝜑  →  𝑆  Or  𝐵 ) | 
						
							| 5 |  | wemapsolem.4 | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ∃ 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 ) ∀ 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 ) ¬  𝑑 𝑅 𝑐 ) | 
						
							| 6 |  | sopo | ⊢ ( 𝑆  Or  𝐵  →  𝑆  Po  𝐵 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝑆  Po  𝐵 ) | 
						
							| 8 | 1 | wemappo | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝑆  Po  𝐵 )  →  𝑇  Po  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 9 | 3 7 8 | syl2anc | ⊢ ( 𝜑  →  𝑇  Po  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 10 |  | poss | ⊢ ( 𝑈  ⊆  ( 𝐵  ↑m  𝐴 )  →  ( 𝑇  Po  ( 𝐵  ↑m  𝐴 )  →  𝑇  Po  𝑈 ) ) | 
						
							| 11 | 2 9 10 | mpsyl | ⊢ ( 𝜑  →  𝑇  Po  𝑈 ) | 
						
							| 12 |  | df-ne | ⊢ ( 𝑎  ≠  𝑏  ↔  ¬  𝑎  =  𝑏 ) | 
						
							| 13 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑎  ∈  𝑈 ) | 
						
							| 14 | 2 13 | sselid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑎  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 15 |  | elmapi | ⊢ ( 𝑎  ∈  ( 𝐵  ↑m  𝐴 )  →  𝑎 : 𝐴 ⟶ 𝐵 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑎 : 𝐴 ⟶ 𝐵 ) | 
						
							| 17 | 16 | ffnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑎  Fn  𝐴 ) | 
						
							| 18 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑏  ∈  𝑈 ) | 
						
							| 19 | 2 18 | sselid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑏  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 20 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  𝐴 )  →  𝑏 : 𝐴 ⟶ 𝐵 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑏 : 𝐴 ⟶ 𝐵 ) | 
						
							| 22 | 21 | ffnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  𝑏  Fn  𝐴 ) | 
						
							| 23 |  | fndmdif | ⊢ ( ( 𝑎  Fn  𝐴  ∧  𝑏  Fn  𝐴 )  →  dom  ( 𝑎  ∖  𝑏 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) } ) | 
						
							| 24 | 17 22 23 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  dom  ( 𝑎  ∖  𝑏 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) } ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 )  ↔  𝑐  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) } ) ) | 
						
							| 26 |  | nesym | ⊢ ( ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 )  ↔  ¬  ( 𝑏 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  𝑐  →  ( 𝑏 ‘ 𝑥 )  =  ( 𝑏 ‘ 𝑐 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑥  =  𝑐  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑐 ) ) | 
						
							| 29 | 27 28 | eqeq12d | ⊢ ( 𝑥  =  𝑐  →  ( ( 𝑏 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 )  ↔  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 30 | 29 | notbid | ⊢ ( 𝑥  =  𝑐  →  ( ¬  ( 𝑏 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 )  ↔  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 31 | 26 30 | bitrid | ⊢ ( 𝑥  =  𝑐  →  ( ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 )  ↔  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 32 | 31 | elrab | ⊢ ( 𝑐  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) }  ↔  ( 𝑐  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 33 | 25 32 | bitrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 )  ↔  ( 𝑐  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) ) | 
						
							| 34 | 24 | eleq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 )  ↔  𝑑  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) } ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =  𝑑  →  ( 𝑏 ‘ 𝑥 )  =  ( 𝑏 ‘ 𝑑 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝑑  →  ( 𝑎 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑑 ) ) | 
						
							| 37 | 35 36 | eqeq12d | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝑏 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 )  ↔  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( 𝑥  =  𝑑  →  ( ¬  ( 𝑏 ‘ 𝑥 )  =  ( 𝑎 ‘ 𝑥 )  ↔  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) | 
						
							| 39 | 26 38 | bitrid | ⊢ ( 𝑥  =  𝑑  →  ( ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 )  ↔  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) | 
						
							| 40 | 39 | elrab | ⊢ ( 𝑑  ∈  { 𝑥  ∈  𝐴  ∣  ( 𝑎 ‘ 𝑥 )  ≠  ( 𝑏 ‘ 𝑥 ) }  ↔  ( 𝑑  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) | 
						
							| 41 | 34 40 | bitrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 )  ↔  ( 𝑑  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 42 | 41 | imbi1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ( 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 )  →  ¬  𝑑 𝑅 𝑐 )  ↔  ( ( 𝑑  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  →  ¬  𝑑 𝑅 𝑐 ) ) ) | 
						
							| 43 |  | impexp | ⊢ ( ( ( 𝑑  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  →  ¬  𝑑 𝑅 𝑐 )  ↔  ( 𝑑  ∈  𝐴  →  ( ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 )  →  ¬  𝑑 𝑅 𝑐 ) ) ) | 
						
							| 44 |  | con34b | ⊢ ( ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  ↔  ( ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 )  →  ¬  𝑑 𝑅 𝑐 ) ) | 
						
							| 45 | 44 | imbi2i | ⊢ ( ( 𝑑  ∈  𝐴  →  ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ↔  ( 𝑑  ∈  𝐴  →  ( ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 )  →  ¬  𝑑 𝑅 𝑐 ) ) ) | 
						
							| 46 | 43 45 | bitr4i | ⊢ ( ( ( 𝑑  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  →  ¬  𝑑 𝑅 𝑐 )  ↔  ( 𝑑  ∈  𝐴  →  ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 47 | 42 46 | bitrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ( 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 )  →  ¬  𝑑 𝑅 𝑐 )  ↔  ( 𝑑  ∈  𝐴  →  ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 48 | 47 | ralbidv2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ∀ 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 ) ¬  𝑑 𝑅 𝑐  ↔  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 49 | 33 48 | anbi12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ( 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 )  ∧  ∀ 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 ) ¬  𝑑 𝑅 𝑐 )  ↔  ( ( 𝑐  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 50 |  | anass | ⊢ ( ( ( 𝑐  ∈  𝐴  ∧  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ↔  ( 𝑐  ∈  𝐴  ∧  ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 51 | 49 50 | bitrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ( 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 )  ∧  ∀ 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 ) ¬  𝑑 𝑅 𝑐 )  ↔  ( 𝑐  ∈  𝐴  ∧  ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) ) | 
						
							| 52 | 51 | rexbidv2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ∃ 𝑐  ∈  dom  ( 𝑎  ∖  𝑏 ) ∀ 𝑑  ∈  dom  ( 𝑎  ∖  𝑏 ) ¬  𝑑 𝑅 𝑐  ↔  ∃ 𝑐  ∈  𝐴 ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 53 | 5 52 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ∃ 𝑐  ∈  𝐴 ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 54 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  ∧  𝑐  ∈  𝐴 )  →  𝑆  Or  𝐵 ) | 
						
							| 55 | 21 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  ∧  𝑐  ∈  𝐴 )  →  ( 𝑏 ‘ 𝑐 )  ∈  𝐵 ) | 
						
							| 56 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  ∧  𝑐  ∈  𝐴 )  →  ( 𝑎 ‘ 𝑐 )  ∈  𝐵 ) | 
						
							| 57 |  | sotrieq | ⊢ ( ( 𝑆  Or  𝐵  ∧  ( ( 𝑏 ‘ 𝑐 )  ∈  𝐵  ∧  ( 𝑎 ‘ 𝑐 )  ∈  𝐵 ) )  →  ( ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ↔  ¬  ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) | 
						
							| 58 | 57 | con2bid | ⊢ ( ( 𝑆  Or  𝐵  ∧  ( ( 𝑏 ‘ 𝑐 )  ∈  𝐵  ∧  ( 𝑎 ‘ 𝑐 )  ∈  𝐵 ) )  →  ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ↔  ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 59 | 58 | biimprd | ⊢ ( ( 𝑆  Or  𝐵  ∧  ( ( 𝑏 ‘ 𝑐 )  ∈  𝐵  ∧  ( 𝑎 ‘ 𝑐 )  ∈  𝐵 ) )  →  ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  →  ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) | 
						
							| 60 | 54 55 56 59 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  ∧  𝑐  ∈  𝐴 )  →  ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  →  ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) ) ) ) | 
						
							| 61 | 60 | anim1d | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  ∧  𝑐  ∈  𝐴 )  →  ( ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  →  ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 62 | 61 | reximdva | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( ∃ 𝑐  ∈  𝐴 ( ¬  ( 𝑏 ‘ 𝑐 )  =  ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  →  ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 63 | 53 62 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 64 | 1 | wemaplem1 | ⊢ ( ( 𝑏  ∈  V  ∧  𝑎  ∈  V )  →  ( 𝑏 𝑇 𝑎  ↔  ∃ 𝑐  ∈  𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 65 | 64 | el2v | ⊢ ( 𝑏 𝑇 𝑎  ↔  ∃ 𝑐  ∈  𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 66 | 1 | wemaplem1 | ⊢ ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V )  →  ( 𝑎 𝑇 𝑏  ↔  ∃ 𝑐  ∈  𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) ) | 
						
							| 67 | 66 | el2v | ⊢ ( 𝑎 𝑇 𝑏  ↔  ∃ 𝑐  ∈  𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) | 
						
							| 68 | 65 67 | orbi12i | ⊢ ( ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 )  ↔  ( ∃ 𝑐  ∈  𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ∃ 𝑐  ∈  𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) ) | 
						
							| 69 |  | r19.43 | ⊢ ( ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) )  ↔  ( ∃ 𝑐  ∈  𝐴 ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ∃ 𝑐  ∈  𝐴 ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) ) | 
						
							| 70 |  | andir | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ↔  ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) ) | 
						
							| 71 |  | eqcom | ⊢ ( ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 )  ↔  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) | 
						
							| 72 | 71 | imbi2i | ⊢ ( ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  ↔  ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) | 
						
							| 73 | 72 | ralbii | ⊢ ( ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) )  ↔  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) | 
						
							| 74 | 73 | anbi2i | ⊢ ( ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ↔  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) | 
						
							| 75 | 74 | orbi2i | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) )  ↔  ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) ) ) | 
						
							| 76 | 70 75 | bitr2i | ⊢ ( ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) )  ↔  ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 77 | 76 | rexbii | ⊢ ( ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) )  ∨  ( ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) )  ↔  ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 78 | 68 69 77 | 3bitr2i | ⊢ ( ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 )  ↔  ∃ 𝑐  ∈  𝐴 ( ( ( 𝑏 ‘ 𝑐 ) 𝑆 ( 𝑎 ‘ 𝑐 )  ∨  ( 𝑎 ‘ 𝑐 ) 𝑆 ( 𝑏 ‘ 𝑐 ) )  ∧  ∀ 𝑑  ∈  𝐴 ( 𝑑 𝑅 𝑐  →  ( 𝑏 ‘ 𝑑 )  =  ( 𝑎 ‘ 𝑑 ) ) ) ) | 
						
							| 79 | 63 78 | sylibr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 )  ∧  𝑎  ≠  𝑏 ) )  →  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) | 
						
							| 80 | 79 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑎  ≠  𝑏  →  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) ) | 
						
							| 81 | 12 80 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( ¬  𝑎  =  𝑏  →  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) ) | 
						
							| 82 | 81 | orrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑎  =  𝑏  ∨  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) ) | 
						
							| 83 |  | 3orrot | ⊢ ( ( 𝑎 𝑇 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑇 𝑎 )  ↔  ( 𝑎  =  𝑏  ∨  𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) | 
						
							| 84 |  | 3orass | ⊢ ( ( 𝑎  =  𝑏  ∨  𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 )  ↔  ( 𝑎  =  𝑏  ∨  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) ) ) | 
						
							| 85 | 83 84 | bitr2i | ⊢ ( ( 𝑎  =  𝑏  ∨  ( 𝑏 𝑇 𝑎  ∨  𝑎 𝑇 𝑏 ) )  ↔  ( 𝑎 𝑇 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑇 𝑎 ) ) | 
						
							| 86 | 82 85 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑈  ∧  𝑏  ∈  𝑈 ) )  →  ( 𝑎 𝑇 𝑏  ∨  𝑎  =  𝑏  ∨  𝑏 𝑇 𝑎 ) ) | 
						
							| 87 | 11 86 | issod | ⊢ ( 𝜑  →  𝑇  Or  𝑈 ) |