| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapwe.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 2 |  | wemapwe.u | ⊢ 𝑈  =  { 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ∣  𝑥  finSupp  𝑍 } | 
						
							| 3 |  | wemapwe.2 | ⊢ ( 𝜑  →  𝑅  We  𝐴 ) | 
						
							| 4 |  | wemapwe.3 | ⊢ ( 𝜑  →  𝑆  We  𝐵 ) | 
						
							| 5 |  | wemapwe.4 | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 6 |  | wemapwe.5 | ⊢ 𝐹  =  OrdIso ( 𝑅 ,  𝐴 ) | 
						
							| 7 |  | wemapwe.6 | ⊢ 𝐺  =  OrdIso ( 𝑆 ,  𝐵 ) | 
						
							| 8 |  | wemapwe.7 | ⊢ 𝑍  =  ( 𝐺 ‘ ∅ ) | 
						
							| 9 |  | eqid | ⊢ { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) }  =  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) } | 
						
							| 10 |  | eqid | ⊢ ( ◡ 𝐺 ‘ 𝑍 )  =  ( ◡ 𝐺 ‘ 𝑍 ) | 
						
							| 11 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐴  ∈  V ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝑅  We  𝐴 ) | 
						
							| 13 | 6 | oiiso | ⊢ ( ( 𝐴  ∈  V  ∧  𝑅  We  𝐴 )  →  𝐹  Isom   E  ,  𝑅 ( dom  𝐹 ,  𝐴 ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐹  Isom   E  ,  𝑅 ( dom  𝐹 ,  𝐴 ) ) | 
						
							| 15 |  | isof1o | ⊢ ( 𝐹  Isom   E  ,  𝑅 ( dom  𝐹 ,  𝐴 )  →  𝐹 : dom  𝐹 –1-1-onto→ 𝐴 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐹 : dom  𝐹 –1-1-onto→ 𝐴 ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐵  ∈  V ) | 
						
							| 18 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝑆  We  𝐵 ) | 
						
							| 19 | 7 | oiiso | ⊢ ( ( 𝐵  ∈  V  ∧  𝑆  We  𝐵 )  →  𝐺  Isom   E  ,  𝑆 ( dom  𝐺 ,  𝐵 ) ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐺  Isom   E  ,  𝑆 ( dom  𝐺 ,  𝐵 ) ) | 
						
							| 21 |  | isof1o | ⊢ ( 𝐺  Isom   E  ,  𝑆 ( dom  𝐺 ,  𝐵 )  →  𝐺 : dom  𝐺 –1-1-onto→ 𝐵 ) | 
						
							| 22 |  | f1ocnv | ⊢ ( 𝐺 : dom  𝐺 –1-1-onto→ 𝐵  →  ◡ 𝐺 : 𝐵 –1-1-onto→ dom  𝐺 ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ◡ 𝐺 : 𝐵 –1-1-onto→ dom  𝐺 ) | 
						
							| 24 | 6 | oiexg | ⊢ ( 𝐴  ∈  V  →  𝐹  ∈  V ) | 
						
							| 25 | 24 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐹  ∈  V ) | 
						
							| 26 | 25 | dmexd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  𝐹  ∈  V ) | 
						
							| 27 | 7 | oiexg | ⊢ ( 𝐵  ∈  V  →  𝐺  ∈  V ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐺  ∈  V ) | 
						
							| 29 | 28 | dmexd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  𝐺  ∈  V ) | 
						
							| 30 | 20 21 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐺 : dom  𝐺 –1-1-onto→ 𝐵 ) | 
						
							| 31 |  | f1ofo | ⊢ ( 𝐺 : dom  𝐺 –1-1-onto→ 𝐵  →  𝐺 : dom  𝐺 –onto→ 𝐵 ) | 
						
							| 32 |  | forn | ⊢ ( 𝐺 : dom  𝐺 –onto→ 𝐵  →  ran  𝐺  =  𝐵 ) | 
						
							| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ran  𝐺  =  𝐵 ) | 
						
							| 34 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝐵  ≠  ∅ ) | 
						
							| 35 | 33 34 | eqnetrd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ran  𝐺  ≠  ∅ ) | 
						
							| 36 |  | dm0rn0 | ⊢ ( dom  𝐺  =  ∅  ↔  ran  𝐺  =  ∅ ) | 
						
							| 37 | 36 | necon3bii | ⊢ ( dom  𝐺  ≠  ∅  ↔  ran  𝐺  ≠  ∅ ) | 
						
							| 38 | 35 37 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  𝐺  ≠  ∅ ) | 
						
							| 39 | 7 | oicl | ⊢ Ord  dom  𝐺 | 
						
							| 40 |  | ord0eln0 | ⊢ ( Ord  dom  𝐺  →  ( ∅  ∈  dom  𝐺  ↔  dom  𝐺  ≠  ∅ ) ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( ∅  ∈  dom  𝐺  ↔  dom  𝐺  ≠  ∅ ) | 
						
							| 42 | 38 41 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ∅  ∈  dom  𝐺 ) | 
						
							| 43 | 7 | oif | ⊢ 𝐺 : dom  𝐺 ⟶ 𝐵 | 
						
							| 44 | 43 | ffvelcdmi | ⊢ ( ∅  ∈  dom  𝐺  →  ( 𝐺 ‘ ∅ )  ∈  𝐵 ) | 
						
							| 45 | 42 44 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝐺 ‘ ∅ )  ∈  𝐵 ) | 
						
							| 46 | 8 45 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 47 | 2 9 10 16 23 11 17 26 29 46 | mapfien | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) } ) | 
						
							| 48 |  | eqid | ⊢ { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ∅ }  =  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ∅ } | 
						
							| 49 | 7 | oion | ⊢ ( 𝐵  ∈  V  →  dom  𝐺  ∈  On ) | 
						
							| 50 | 49 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  𝐺  ∈  On ) | 
						
							| 51 | 6 | oion | ⊢ ( 𝐴  ∈  V  →  dom  𝐹  ∈  On ) | 
						
							| 52 | 51 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  𝐹  ∈  On ) | 
						
							| 53 | 48 50 52 | cantnfdm | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  ( dom  𝐺  CNF  dom  𝐹 )  =  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ∅ } ) | 
						
							| 54 | 8 | fveq2i | ⊢ ( ◡ 𝐺 ‘ 𝑍 )  =  ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) ) | 
						
							| 55 |  | f1ocnvfv1 | ⊢ ( ( 𝐺 : dom  𝐺 –1-1-onto→ 𝐵  ∧  ∅  ∈  dom  𝐺 )  →  ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) )  =  ∅ ) | 
						
							| 56 | 30 42 55 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ◡ 𝐺 ‘ ( 𝐺 ‘ ∅ ) )  =  ∅ ) | 
						
							| 57 | 54 56 | eqtrid | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ◡ 𝐺 ‘ 𝑍 )  =  ∅ ) | 
						
							| 58 | 57 | breq2d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 )  ↔  𝑥  finSupp  ∅ ) ) | 
						
							| 59 | 58 | rabbidv | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) }  =  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ∅ } ) | 
						
							| 60 | 53 59 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  dom  ( dom  𝐺  CNF  dom  𝐹 )  =  { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) } ) | 
						
							| 61 | 60 | f1oeq3d | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) : 𝑈 –1-1-onto→ dom  ( dom  𝐺  CNF  dom  𝐹 )  ↔  ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) : 𝑈 –1-1-onto→ { 𝑥  ∈  ( dom  𝐺  ↑m  dom  𝐹 )  ∣  𝑥  finSupp  ( ◡ 𝐺 ‘ 𝑍 ) } ) ) | 
						
							| 62 | 47 61 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) : 𝑈 –1-1-onto→ dom  ( dom  𝐺  CNF  dom  𝐹 ) ) | 
						
							| 63 |  | eqid | ⊢ dom  ( dom  𝐺  CNF  dom  𝐹 )  =  dom  ( dom  𝐺  CNF  dom  𝐹 ) | 
						
							| 64 |  | eqid | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } | 
						
							| 65 | 63 50 52 64 | oemapwe | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) }  We  dom  ( dom  𝐺  CNF  dom  𝐹 )  ∧  dom  OrdIso ( { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ,  dom  ( dom  𝐺  CNF  dom  𝐹 ) )  =  ( dom  𝐺  ↑o  dom  𝐹 ) ) ) | 
						
							| 66 | 65 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) }  We  dom  ( dom  𝐺  CNF  dom  𝐹 ) ) | 
						
							| 67 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) } | 
						
							| 68 | 67 | f1owe | ⊢ ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) : 𝑈 –1-1-onto→ dom  ( dom  𝐺  CNF  dom  𝐹 )  →  ( { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) }  We  dom  ( dom  𝐺  CNF  dom  𝐹 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  We  𝑈 ) ) | 
						
							| 69 | 62 66 68 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  We  𝑈 ) | 
						
							| 70 |  | weinxp | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  We  𝑈  ↔  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) | 
						
							| 71 | 69 70 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) | 
						
							| 72 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝐹 : dom  𝐹 –1-1-onto→ 𝐴 ) | 
						
							| 73 |  | f1ofn | ⊢ ( 𝐹 : dom  𝐹 –1-1-onto→ 𝐴  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑥 ‘ 𝑧 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑦 ‘ 𝑧 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 76 | 74 75 | breq12d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ↔  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 77 |  | breq1 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑧 𝑅 𝑤  ↔  ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤 ) ) | 
						
							| 78 | 77 | imbi1d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 79 | 78 | ralbidv | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 80 | 76 79 | anbi12d | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑐 )  →  ( ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 81 | 80 | rexrn | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( ∃ 𝑧  ∈  ran  𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 82 | 72 73 81 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∃ 𝑧  ∈  ran  𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 83 |  | f1ofo | ⊢ ( 𝐹 : dom  𝐹 –1-1-onto→ 𝐴  →  𝐹 : dom  𝐹 –onto→ 𝐴 ) | 
						
							| 84 |  | forn | ⊢ ( 𝐹 : dom  𝐹 –onto→ 𝐴  →  ran  𝐹  =  𝐴 ) | 
						
							| 85 | 72 83 84 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ran  𝐹  =  𝐴 ) | 
						
							| 86 | 85 | rexeqdv | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∃ 𝑧  ∈  ran  𝐹 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 87 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝐺  ∈  V ) | 
						
							| 88 |  | cnvexg | ⊢ ( 𝐺  ∈  V  →  ◡ 𝐺  ∈  V ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ◡ 𝐺  ∈  V ) | 
						
							| 90 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 91 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝐹  ∈  V ) | 
						
							| 92 |  | coexg | ⊢ ( ( 𝑥  ∈  V  ∧  𝐹  ∈  V )  →  ( 𝑥  ∘  𝐹 )  ∈  V ) | 
						
							| 93 | 90 91 92 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑥  ∘  𝐹 )  ∈  V ) | 
						
							| 94 |  | coexg | ⊢ ( ( ◡ 𝐺  ∈  V  ∧  ( 𝑥  ∘  𝐹 )  ∈  V )  →  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∈  V ) | 
						
							| 95 | 89 93 94 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∈  V ) | 
						
							| 96 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 97 |  | coexg | ⊢ ( ( 𝑦  ∈  V  ∧  𝐹  ∈  V )  →  ( 𝑦  ∘  𝐹 )  ∈  V ) | 
						
							| 98 | 96 91 97 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( 𝑦  ∘  𝐹 )  ∈  V ) | 
						
							| 99 |  | coexg | ⊢ ( ( ◡ 𝐺  ∈  V  ∧  ( 𝑦  ∘  𝐹 )  ∈  V )  →  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  ∈  V ) | 
						
							| 100 | 89 98 99 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  ∈  V ) | 
						
							| 101 |  | fveq1 | ⊢ ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  →  ( 𝑎 ‘ 𝑐 )  =  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 ) ) | 
						
							| 102 |  | fveq1 | ⊢ ( 𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  →  ( 𝑏 ‘ 𝑐 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 ) ) | 
						
							| 103 |  | eleq12 | ⊢ ( ( ( 𝑎 ‘ 𝑐 )  =  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ( 𝑏 ‘ 𝑐 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 ) )  →  ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ↔  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 ) ) ) | 
						
							| 104 | 101 102 103 | syl2an | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ↔  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 ) ) ) | 
						
							| 105 |  | fveq1 | ⊢ ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  →  ( 𝑎 ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 ) ) | 
						
							| 106 |  | fveq1 | ⊢ ( 𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  →  ( 𝑏 ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) | 
						
							| 107 | 105 106 | eqeqan12d | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 )  ↔  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) | 
						
							| 108 | 107 | imbi2d | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) )  ↔  ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) | 
						
							| 109 | 108 | ralbidv | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) | 
						
							| 110 | 104 109 | anbi12d | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) )  ↔  ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 111 | 110 | rexbidv | ⊢ ( ( 𝑎  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∧  𝑏  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) )  →  ( ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 112 | 111 64 | brabga | ⊢ ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) )  ∈  V  ∧  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  ∈  V )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 113 | 95 100 112 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 114 |  | eqid | ⊢ ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) )  =  ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) | 
						
							| 115 |  | coeq1 | ⊢ ( 𝑓  =  𝑥  →  ( 𝑓  ∘  𝐹 )  =  ( 𝑥  ∘  𝐹 ) ) | 
						
							| 116 | 115 | coeq2d | ⊢ ( 𝑓  =  𝑥  →  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) )  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ) | 
						
							| 117 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 118 | 114 116 117 95 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 )  =  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ) | 
						
							| 119 |  | coeq1 | ⊢ ( 𝑓  =  𝑦  →  ( 𝑓  ∘  𝐹 )  =  ( 𝑦  ∘  𝐹 ) ) | 
						
							| 120 | 119 | coeq2d | ⊢ ( 𝑓  =  𝑦  →  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) )  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ) | 
						
							| 121 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑦  ∈  𝑈 ) | 
						
							| 122 | 114 120 121 100 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  =  ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ) | 
						
							| 123 | 118 122 | breq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  ↔  ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ) ) | 
						
							| 124 | 20 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  𝐺  Isom   E  ,  𝑆 ( dom  𝐺 ,  𝐵 ) ) | 
						
							| 125 |  | isocnv | ⊢ ( 𝐺  Isom   E  ,  𝑆 ( dom  𝐺 ,  𝐵 )  →  ◡ 𝐺  Isom  𝑆 ,   E  ( 𝐵 ,  dom  𝐺 ) ) | 
						
							| 126 | 124 125 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ◡ 𝐺  Isom  𝑆 ,   E  ( 𝐵 ,  dom  𝐺 ) ) | 
						
							| 127 | 2 | ssrab3 | ⊢ 𝑈  ⊆  ( 𝐵  ↑m  𝐴 ) | 
						
							| 128 | 127 117 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑥  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 129 |  | elmapi | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  →  𝑥 : 𝐴 ⟶ 𝐵 ) | 
						
							| 130 | 128 129 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑥 : 𝐴 ⟶ 𝐵 ) | 
						
							| 131 | 6 | oif | ⊢ 𝐹 : dom  𝐹 ⟶ 𝐴 | 
						
							| 132 | 131 | ffvelcdmi | ⊢ ( 𝑐  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑐 )  ∈  𝐴 ) | 
						
							| 133 |  | ffvelcdm | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  𝐴 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵 ) | 
						
							| 134 | 130 132 133 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵 ) | 
						
							| 135 | 127 121 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑦  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 136 |  | elmapi | ⊢ ( 𝑦  ∈  ( 𝐵  ↑m  𝐴 )  →  𝑦 : 𝐴 ⟶ 𝐵 ) | 
						
							| 137 | 135 136 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  𝑦 : 𝐴 ⟶ 𝐵 ) | 
						
							| 138 |  | ffvelcdm | ⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵  ∧  ( 𝐹 ‘ 𝑐 )  ∈  𝐴 )  →  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵 ) | 
						
							| 139 | 137 132 138 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵 ) | 
						
							| 140 |  | isorel | ⊢ ( ( ◡ 𝐺  Isom  𝑆 ,   E  ( 𝐵 ,  dom  𝐺 )  ∧  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵  ∧  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∈  𝐵 ) )  →  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ↔  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  E  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 141 | 126 134 139 140 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ↔  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  E  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 142 |  | fvex | ⊢ ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) )  ∈  V | 
						
							| 143 | 142 | epeli | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  E  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) )  ↔  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  ∈  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 144 | 141 143 | bitrdi | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ↔  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  ∈  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 145 | 130 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  𝑥 : 𝐴 ⟶ 𝐵 ) | 
						
							| 146 |  | fco | ⊢ ( ( 𝑥 : 𝐴 ⟶ 𝐵  ∧  𝐹 : dom  𝐹 ⟶ 𝐴 )  →  ( 𝑥  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 147 | 145 131 146 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( 𝑥  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 148 |  | fvco3 | ⊢ ( ( ( 𝑥  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑐 ) ) ) | 
						
							| 149 | 147 148 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑐 ) ) ) | 
						
							| 150 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  𝑐  ∈  dom  𝐹 ) | 
						
							| 151 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑐 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 152 | 131 150 151 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑐 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 153 | 152 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑐 ) )  =  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 154 | 149 153 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 155 | 137 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  𝑦 : 𝐴 ⟶ 𝐵 ) | 
						
							| 156 |  | fco | ⊢ ( ( 𝑦 : 𝐴 ⟶ 𝐵  ∧  𝐹 : dom  𝐹 ⟶ 𝐴 )  →  ( 𝑦  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 157 | 155 131 156 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( 𝑦  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 158 |  | fvco3 | ⊢ ( ( ( 𝑦  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑐 ) ) ) | 
						
							| 159 | 157 158 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑐 ) ) ) | 
						
							| 160 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑐 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 161 | 131 150 160 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑐 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 162 | 161 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑐 ) )  =  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 163 | 159 162 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  =  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 164 | 154 163 | eleq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ↔  ( ◡ 𝐺 ‘ ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) )  ∈  ( ◡ 𝐺 ‘ ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 165 | 144 164 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ↔  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 ) ) ) | 
						
							| 166 | 85 | raleqdv | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∀ 𝑤  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 167 |  | breq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑑 )  →  ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  ↔  ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 168 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 169 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑑 )  →  ( 𝑦 ‘ 𝑤 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 170 | 168 169 | eqeq12d | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑑 )  →  ( ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 )  ↔  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) | 
						
							| 171 | 167 170 | imbi12d | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑑 )  →  ( ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 172 | 171 | ralrn | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( ∀ 𝑤  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 173 | 72 73 172 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∀ 𝑤  ∈  ran  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 174 | 166 173 | bitr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 176 |  | epel | ⊢ ( 𝑐  E  𝑑  ↔  𝑐  ∈  𝑑 ) | 
						
							| 177 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  𝐹  Isom   E  ,  𝑅 ( dom  𝐹 ,  𝐴 ) ) | 
						
							| 178 |  | isorel | ⊢ ( ( 𝐹  Isom   E  ,  𝑅 ( dom  𝐹 ,  𝐴 )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( 𝑐  E  𝑑  ↔  ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 179 | 177 178 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( 𝑐  E  𝑑  ↔  ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 180 | 176 179 | bitr3id | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( 𝑐  ∈  𝑑  ↔  ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 181 | 147 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( 𝑥  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 182 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  𝑑  ∈  dom  𝐹 ) | 
						
							| 183 | 181 182 | fvco3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 ) ) ) | 
						
							| 184 | 157 | adantrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( 𝑦  ∘  𝐹 ) : dom  𝐹 ⟶ 𝐵 ) | 
						
							| 185 | 184 182 | fvco3d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) ) ) | 
						
							| 186 | 183 185 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 )  ↔  ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 ) )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) ) ) ) | 
						
							| 187 | 30 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  𝐺 : dom  𝐺 –1-1-onto→ 𝐵 ) | 
						
							| 188 |  | f1of1 | ⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ dom  𝐺  →  ◡ 𝐺 : 𝐵 –1-1→ dom  𝐺 ) | 
						
							| 189 | 187 22 188 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ◡ 𝐺 : 𝐵 –1-1→ dom  𝐺 ) | 
						
							| 190 | 181 182 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  ∈  𝐵 ) | 
						
							| 191 | 184 182 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 )  ∈  𝐵 ) | 
						
							| 192 |  | f1fveq | ⊢ ( ( ◡ 𝐺 : 𝐵 –1-1→ dom  𝐺  ∧  ( ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  ∈  𝐵  ∧  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 )  ∈  𝐵 ) )  →  ( ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 ) )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) )  ↔  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  =  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) ) ) | 
						
							| 193 | 189 190 191 192 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ◡ 𝐺 ‘ ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 ) )  =  ( ◡ 𝐺 ‘ ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) )  ↔  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  =  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 ) ) ) | 
						
							| 194 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  𝑑  ∈  dom  𝐹 )  →  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 195 | 131 182 194 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 196 |  | fvco3 | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  𝑑  ∈  dom  𝐹 )  →  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 197 | 131 182 196 | sylancr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 198 | 195 197 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ( 𝑥  ∘  𝐹 ) ‘ 𝑑 )  =  ( ( 𝑦  ∘  𝐹 ) ‘ 𝑑 )  ↔  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) | 
						
							| 199 | 186 193 198 | 3bitrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 )  ↔  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) | 
						
							| 200 | 180 199 | imbi12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  ( 𝑐  ∈  dom  𝐹  ∧  𝑑  ∈  dom  𝐹 ) )  →  ( ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) )  ↔  ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 201 | 200 | anassrs | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  ∧  𝑑  ∈  dom  𝐹 )  →  ( ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) )  ↔  ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 202 | 201 | ralbidva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( ( 𝐹 ‘ 𝑐 ) 𝑅 ( 𝐹 ‘ 𝑑 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑑 ) )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑑 ) ) ) ) ) | 
						
							| 203 | 175 202 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) | 
						
							| 204 | 165 203 | anbi12d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ∧  𝑐  ∈  dom  𝐹 )  →  ( ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 205 | 204 | rexbidva | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑐  ∈  dom  𝐹 ( ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑐 )  ∈  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( ( ◡ 𝐺  ∘  ( 𝑥  ∘  𝐹 ) ) ‘ 𝑑 )  =  ( ( ◡ 𝐺  ∘  ( 𝑦  ∘  𝐹 ) ) ‘ 𝑑 ) ) ) ) ) | 
						
							| 206 | 113 123 205 | 3bitr4rd | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑐 ) ) 𝑆 ( 𝑦 ‘ ( 𝐹 ‘ 𝑐 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( ( 𝐹 ‘ 𝑐 ) 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) ) ) | 
						
							| 207 | 82 86 206 | 3bitr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) ) ) | 
						
							| 208 | 207 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 )  →  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) ) ) ) | 
						
							| 209 | 208 | pm5.32rd | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) )  ↔  ( ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) ) ) | 
						
							| 210 | 209 | opabbidv | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) } ) | 
						
							| 211 |  | df-xp | ⊢ ( 𝑈  ×  𝑈 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) } | 
						
							| 212 | 1 211 | ineq12i | ⊢ ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) } ) | 
						
							| 213 |  | inopab | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) } | 
						
							| 214 | 212 213 | eqtri | ⊢ ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑧 𝑅 𝑤  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) } | 
						
							| 215 | 211 | ineq2i | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) } ) | 
						
							| 216 |  | inopab | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) } | 
						
							| 217 | 215 216 | eqtri | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 )  ∧  ( 𝑥  ∈  𝑈  ∧  𝑦  ∈  𝑈 ) ) } | 
						
							| 218 | 210 214 217 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) ) ) | 
						
							| 219 |  | weeq1 | ⊢ ( ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  =  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  →  ( ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈  ↔  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) ) | 
						
							| 220 | 218 219 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈  ↔  ( { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑥 ) { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  dom  𝐹 ( ( 𝑎 ‘ 𝑐 )  ∈  ( 𝑏 ‘ 𝑐 )  ∧  ∀ 𝑑  ∈  dom  𝐹 ( 𝑐  ∈  𝑑  →  ( 𝑎 ‘ 𝑑 )  =  ( 𝑏 ‘ 𝑑 ) ) ) } ( ( 𝑓  ∈  𝑈  ↦  ( ◡ 𝐺  ∘  ( 𝑓  ∘  𝐹 ) ) ) ‘ 𝑦 ) }  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) ) | 
						
							| 221 | 71 220 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) | 
						
							| 222 |  | weinxp | ⊢ ( 𝑇  We  𝑈  ↔  ( 𝑇  ∩  ( 𝑈  ×  𝑈 ) )  We  𝑈 ) | 
						
							| 223 | 221 222 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) )  →  𝑇  We  𝑈 ) | 
						
							| 224 | 223 | ex | ⊢ ( 𝜑  →  ( ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  𝑇  We  𝑈 ) ) | 
						
							| 225 |  | we0 | ⊢ 𝑇  We  ∅ | 
						
							| 226 |  | elmapex | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  →  ( 𝐵  ∈  V  ∧  𝐴  ∈  V ) ) | 
						
							| 227 | 226 | con3i | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ¬  𝑥  ∈  ( 𝐵  ↑m  𝐴 ) ) | 
						
							| 228 | 227 | pm2.21d | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  →  ¬  𝑥  finSupp  𝑍 ) ) | 
						
							| 229 | 228 | ralrimiv | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ∀ 𝑥  ∈  ( 𝐵  ↑m  𝐴 ) ¬  𝑥  finSupp  𝑍 ) | 
						
							| 230 |  | rabeq0 | ⊢ ( { 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ∣  𝑥  finSupp  𝑍 }  =  ∅  ↔  ∀ 𝑥  ∈  ( 𝐵  ↑m  𝐴 ) ¬  𝑥  finSupp  𝑍 ) | 
						
							| 231 | 229 230 | sylibr | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  { 𝑥  ∈  ( 𝐵  ↑m  𝐴 )  ∣  𝑥  finSupp  𝑍 }  =  ∅ ) | 
						
							| 232 | 2 231 | eqtrid | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  𝑈  =  ∅ ) | 
						
							| 233 |  | weeq2 | ⊢ ( 𝑈  =  ∅  →  ( 𝑇  We  𝑈  ↔  𝑇  We  ∅ ) ) | 
						
							| 234 | 232 233 | syl | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ( 𝑇  We  𝑈  ↔  𝑇  We  ∅ ) ) | 
						
							| 235 | 225 234 | mpbiri | ⊢ ( ¬  ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  𝑇  We  𝑈 ) | 
						
							| 236 | 224 235 | pm2.61d1 | ⊢ ( 𝜑  →  𝑇  We  𝑈 ) |