| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑆  We  𝐵  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝑆  We  𝐵 ) | 
						
							| 2 |  | isof1o | ⊢ ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  𝑓 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 3 |  | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵  →  𝑓 : 𝐴 –onto→ 𝐵 ) | 
						
							| 4 |  | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵  →  ran  𝑓  =  𝐵 ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  ran  𝑓  =  𝐵 ) | 
						
							| 6 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 7 | 6 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 8 | 5 7 | eqeltrrdi | ⊢ ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 9 | 8 | ad2antrl | ⊢ ( ( 𝑆  We  𝐵  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝐵  ∈  V ) | 
						
							| 10 |  | exse | ⊢ ( 𝐵  ∈  V  →  𝑆  Se  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑆  We  𝐵  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝑆  Se  𝐵 ) | 
						
							| 12 | 1 11 | jca | ⊢ ( ( 𝑆  We  𝐵  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 ) ) | 
						
							| 13 |  | weisoeq2 | ⊢ ( ( ( 𝑆  We  𝐵  ∧  𝑆  Se  𝐵 )  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝑓  =  𝑔 ) | 
						
							| 14 | 12 13 | sylancom | ⊢ ( ( 𝑆  We  𝐵  ∧  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) )  →  𝑓  =  𝑔 ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝑆  We  𝐵  →  ( ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 16 | 15 | alrimivv | ⊢ ( 𝑆  We  𝐵  →  ∀ 𝑓 ∀ 𝑔 ( ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 17 |  | isoeq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ↔  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 18 | 17 | mo4 | ⊢ ( ∃* 𝑓 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ↔  ∀ 𝑓 ∀ 𝑔 ( ( 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ∧  𝑔  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 19 | 16 18 | sylibr | ⊢ ( 𝑆  We  𝐵  →  ∃* 𝑓 𝑓  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) |