| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabn0 | ⊢ ( { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅  ↔  ∃ 𝑎  ∈  𝐴 ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 ) | 
						
							| 2 |  | rexnal | ⊢ ( ∃ 𝑎  ∈  𝐴 ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎  ↔  ¬  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅  ↔  ¬  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  𝑅  We  𝐴 ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  𝑅  Se  𝐴 ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ⊆  𝐴 | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ⊆  𝐴 ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ ) | 
						
							| 9 |  | wereu2 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ⊆  𝐴  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ ) )  →  ∃! 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏 ) | 
						
							| 10 | 4 5 7 8 9 | syl22anc | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  ∃! 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏 ) | 
						
							| 11 |  | reurex | ⊢ ( ∃! 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  →  ∃ 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅ )  →  ∃ 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅  →  ∃ 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 15 |  | id | ⊢ ( 𝑎  =  𝑏  →  𝑎  =  𝑏 ) | 
						
							| 16 | 14 15 | eqeq12d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝐹 ‘ 𝑎 )  =  𝑎  ↔  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( 𝑎  =  𝑏  →  ( ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎  ↔  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 18 | 17 | elrab | ⊢ ( 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ↔  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑎  =  𝑐  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 20 |  | id | ⊢ ( 𝑎  =  𝑐  →  𝑎  =  𝑐 ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝐹 ‘ 𝑎 )  =  𝑎  ↔  ( 𝐹 ‘ 𝑐 )  =  𝑐 ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( 𝑎  =  𝑐  →  ( ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎  ↔  ¬  ( 𝐹 ‘ 𝑐 )  =  𝑐 ) ) | 
						
							| 23 | 22 | ralrab | ⊢ ( ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  ↔  ∀ 𝑐  ∈  𝐴 ( ¬  ( 𝐹 ‘ 𝑐 )  =  𝑐  →  ¬  𝑐 𝑅 𝑏 ) ) | 
						
							| 24 |  | con34b | ⊢ ( ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  ↔  ( ¬  ( 𝐹 ‘ 𝑐 )  =  𝑐  →  ¬  𝑐 𝑅 𝑏 ) ) | 
						
							| 25 | 24 | bicomi | ⊢ ( ( ¬  ( 𝐹 ‘ 𝑐 )  =  𝑐  →  ¬  𝑐 𝑅 𝑏 )  ↔  ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 ) ) | 
						
							| 26 | 25 | ralbii | ⊢ ( ∀ 𝑐  ∈  𝐴 ( ¬  ( 𝐹 ‘ 𝑐 )  =  𝑐  →  ¬  𝑐 𝑅 𝑏 )  ↔  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 ) ) | 
						
							| 27 | 23 26 | bitri | ⊢ ( ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  ↔  ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 ) ) | 
						
							| 28 |  | simpl3 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) ) | 
						
							| 29 |  | isof1o | ⊢ ( 𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 31 |  | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝑏  ∈  𝐴 ) | 
						
							| 34 | 32 33 | ffvelcdmd | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( 𝐹 ‘ 𝑏 )  ∈  𝐴 ) | 
						
							| 35 |  | breq1 | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑏 )  →  ( 𝑐 𝑅 𝑏  ↔  ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑏 )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑏 )  →  𝑐  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 38 | 36 37 | eqeq12d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝐹 ‘ 𝑐 )  =  𝑐  ↔  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 39 | 35 38 | imbi12d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑏 )  →  ( ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  ↔  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 40 | 39 | rspcv | ⊢ ( ( 𝐹 ‘ 𝑏 )  ∈  𝐴  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 41 | 34 40 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 42 | 41 | com23 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 44 |  | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  𝐹 : 𝐴 –1-1→ 𝐴 ) | 
						
							| 45 | 30 44 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝐹 : 𝐴 –1-1→ 𝐴 ) | 
						
							| 46 |  | f1fveq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐴  ∧  ( ( 𝐹 ‘ 𝑏 )  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 47 | 45 34 33 46 | syl12anc | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 48 |  | pm2.21 | ⊢ ( ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏  →  ( ( 𝐹 ‘ 𝑏 )  =  𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 49 | 48 | ad2antll | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ 𝑏 )  =  𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 50 | 47 49 | sylbid | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 )  →  ( ( 𝐹 ‘ ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐹 ‘ 𝑏 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 52 | 43 51 | syld | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏 )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 53 |  | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 54 |  | f1of | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 55 | 30 53 54 | 3syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ◡ 𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 56 | 55 33 | ffvelcdmd | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝐴 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  →  ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝐴 ) | 
						
							| 58 |  | isorel | ⊢ ( ( 𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 )  ∧  ( ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 59 | 28 56 33 58 | syl12anc | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 60 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝑏  ∈  𝐴 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 61 | 30 33 60 | syl2anc | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 62 | 61 | breq1d | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) 𝑅 ( 𝐹 ‘ 𝑏 )  ↔  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 63 | 59 62 | bitr2d | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( 𝑏 𝑅 ( 𝐹 ‘ 𝑏 )  ↔  ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) | 
						
							| 64 | 63 | biimpa | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  →  ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) | 
						
							| 65 |  | breq1 | ⊢ ( 𝑐  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ( 𝑐 𝑅 𝑏  ↔  ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏 ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑐  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 67 |  | id | ⊢ ( 𝑐  =  ( ◡ 𝐹 ‘ 𝑏 )  →  𝑐  =  ( ◡ 𝐹 ‘ 𝑏 ) ) | 
						
							| 68 | 66 67 | eqeq12d | ⊢ ( 𝑐  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ( ( 𝐹 ‘ 𝑐 )  =  𝑐  ↔  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 69 | 65 68 | imbi12d | ⊢ ( 𝑐  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ( ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  ↔  ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 70 | 69 | rspcv | ⊢ ( ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝐴  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 71 | 70 | com23 | ⊢ ( ( ◡ 𝐹 ‘ 𝑏 )  ∈  𝐴  →  ( ( ◡ 𝐹 ‘ 𝑏 ) 𝑅 𝑏  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 72 | 57 64 71 | sylc | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 73 |  | simplrr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) | 
						
							| 74 |  | fveq2 | ⊢ ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 76 | 61 | fveq2d | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ( 𝐹 ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) )  =  ( 𝐹 ‘ 𝑏 ) ) | 
						
							| 78 | 61 | adantr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 79 | 75 77 78 | 3eqtr3d | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) | 
						
							| 80 | 73 79 48 | sylc | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 ) )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) | 
						
							| 81 | 80 | ex | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  →  ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) )  =  ( ◡ 𝐹 ‘ 𝑏 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 83 | 72 82 | syld | ⊢ ( ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  ∧  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 84 |  | simprr | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) | 
						
							| 85 |  | simpl1 | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝑅  We  𝐴 ) | 
						
							| 86 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  𝑅  Or  𝐴 ) | 
						
							| 88 |  | sotrieq | ⊢ ( ( 𝑅  Or  𝐴  ∧  ( ( 𝐹 ‘ 𝑏 )  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑏 )  =  𝑏  ↔  ¬  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ∨  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 89 | 87 34 33 88 | syl12anc | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ 𝑏 )  =  𝑏  ↔  ¬  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ∨  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 90 | 89 | con2bid | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ∨  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) )  ↔  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 91 | 84 90 | mpbird | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ( 𝐹 ‘ 𝑏 ) 𝑅 𝑏  ∨  𝑏 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 92 | 52 83 91 | mpjaodan | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ∀ 𝑐  ∈  𝐴 ( 𝑐 𝑅 𝑏  →  ( 𝐹 ‘ 𝑐 )  =  𝑐 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 93 | 27 92 | biimtrid | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  ∧  ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 ) )  →  ( ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( ( 𝑏  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑏 )  =  𝑏 )  →  ( ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) ) | 
						
							| 95 | 18 94 | biimtrid | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  →  ( ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) ) | 
						
							| 96 | 95 | rexlimdv | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( ∃ 𝑏  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ∀ 𝑐  ∈  { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 } ¬  𝑐 𝑅 𝑏  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 97 | 13 96 | syld | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( { 𝑎  ∈  𝐴  ∣  ¬  ( 𝐹 ‘ 𝑎 )  =  𝑎 }  ≠  ∅  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 98 | 3 97 | biimtrrid | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( ¬  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 99 | 98 | pm2.18d | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎 ) | 
						
							| 100 |  | fvresi | ⊢ ( 𝑎  ∈  𝐴  →  ( (  I   ↾  𝐴 ) ‘ 𝑎 )  =  𝑎 ) | 
						
							| 101 | 100 | eqeq2d | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 )  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 102 | 101 | biimprd | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝐹 ‘ 𝑎 )  =  𝑎  →  ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 ) ) ) | 
						
							| 103 | 102 | ralimia | ⊢ ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  𝑎  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 ) ) | 
						
							| 104 | 99 103 | syl | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 ) ) | 
						
							| 105 | 29 | 3ad2ant3 | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | 
						
							| 106 |  | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  →  𝐹  Fn  𝐴 ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 108 |  | fnresi | ⊢ (  I   ↾  𝐴 )  Fn  𝐴 | 
						
							| 109 | 108 | a1i | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  (  I   ↾  𝐴 )  Fn  𝐴 ) | 
						
							| 110 |  | eqfnfv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  (  I   ↾  𝐴 )  Fn  𝐴 )  →  ( 𝐹  =  (  I   ↾  𝐴 )  ↔  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 ) ) ) | 
						
							| 111 | 107 109 110 | syl2anc | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  ( 𝐹  =  (  I   ↾  𝐴 )  ↔  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( (  I   ↾  𝐴 ) ‘ 𝑎 ) ) ) | 
						
							| 112 | 104 111 | mpbird | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴  ∧  𝐹  Isom  𝑅 ,  𝑅 ( 𝐴 ,  𝐴 ) )  →  𝐹  =  (  I   ↾  𝐴 ) ) |