| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wepwso.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  𝑦  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) ) ) } | 
						
							| 2 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 3 |  | nnord | ⊢ ( 2o  ∈  ω  →  Ord  2o ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ Ord  2o | 
						
							| 5 |  | ordwe | ⊢ ( Ord  2o  →   E   We  2o ) | 
						
							| 6 |  | weso | ⊢ (  E   We  2o  →   E   Or  2o ) | 
						
							| 7 | 4 5 6 | mp2b | ⊢  E   Or  2o | 
						
							| 8 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 9 | 8 | wemapso | ⊢ ( ( 𝑅  We  𝐴  ∧   E   Or  2o )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 ) ) | 
						
							| 10 | 7 9 | mpan2 | ⊢ ( 𝑅  We  𝐴  →  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑅  We  𝐴 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 ) ) | 
						
							| 12 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑎  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑎  “  { 1o } ) )  =  ( 𝑎  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑎  “  { 1o } ) ) | 
						
							| 14 | 1 8 13 | wepwsolem | ⊢ ( 𝐴  ∈  V  →  ( 𝑎  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑎  “  { 1o } ) )  Isom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } ,  𝑇 ( ( 2o  ↑m  𝐴 ) ,  𝒫  𝐴 ) ) | 
						
							| 15 |  | isoso | ⊢ ( ( 𝑎  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑎  “  { 1o } ) )  Isom  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } ,  𝑇 ( ( 2o  ↑m  𝐴 ) ,  𝒫  𝐴 )  →  ( { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 )  ↔  𝑇  Or  𝒫  𝐴 ) ) | 
						
							| 16 | 12 14 15 | 3syl | ⊢ ( 𝐴  ∈  𝑉  →  ( { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 )  ↔  𝑇  Or  𝒫  𝐴 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑅  We  𝐴 )  →  ( { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) }  Or  ( 2o  ↑m  𝐴 )  ↔  𝑇  Or  𝒫  𝐴 ) ) | 
						
							| 18 | 11 17 | mpbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑅  We  𝐴 )  →  𝑇  Or  𝒫  𝐴 ) |