| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wepwso.t | ⊢ 𝑇  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  𝑦  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) ) ) } | 
						
							| 2 |  | wepwso.u | ⊢ 𝑈  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) ) } | 
						
							| 3 |  | wepwso.f | ⊢ 𝐹  =  ( 𝑎  ∈  ( 2o  ↑m  𝐴 )  ↦  ( ◡ 𝑎  “  { 1o } ) ) | 
						
							| 4 | 3 | pw2f1o2 | ⊢ ( 𝐴  ∈  V  →  𝐹 : ( 2o  ↑m  𝐴 ) –1-1-onto→ 𝒫  𝐴 ) | 
						
							| 5 |  | fvex | ⊢ ( 𝑐 ‘ 𝑧 )  ∈  V | 
						
							| 6 | 5 | epeli | ⊢ ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ↔  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) ) | 
						
							| 7 |  | elmapi | ⊢ ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  →  𝑏 : 𝐴 ⟶ 2o ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  →  𝑏 : 𝐴 ⟶ 2o ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑏 ‘ 𝑧 )  ∈  2o ) | 
						
							| 10 |  | elmapi | ⊢ ( 𝑐  ∈  ( 2o  ↑m  𝐴 )  →  𝑐 : 𝐴 ⟶ 2o ) | 
						
							| 11 | 10 | ad2antll | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  →  𝑐 : 𝐴 ⟶ 2o ) | 
						
							| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑐 ‘ 𝑧 )  ∈  2o ) | 
						
							| 13 |  | n0i | ⊢ ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  →  ¬  ( 𝑐 ‘ 𝑧 )  =  ∅ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  →  ¬  ( 𝑐 ‘ 𝑧 )  =  ∅ ) | 
						
							| 15 |  | elpri | ⊢ ( ( 𝑐 ‘ 𝑧 )  ∈  { ∅ ,  1o }  →  ( ( 𝑐 ‘ 𝑧 )  =  ∅  ∨  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 16 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 17 | 15 16 | eleq2s | ⊢ ( ( 𝑐 ‘ 𝑧 )  ∈  2o  →  ( ( 𝑐 ‘ 𝑧 )  =  ∅  ∨  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  →  ( ( 𝑐 ‘ 𝑧 )  =  ∅  ∨  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 19 |  | orel1 | ⊢ ( ¬  ( 𝑐 ‘ 𝑧 )  =  ∅  →  ( ( ( 𝑐 ‘ 𝑧 )  =  ∅  ∨  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 20 | 14 18 19 | sylc | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  →  ( 𝑐 ‘ 𝑧 )  =  1o ) | 
						
							| 21 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 22 | 21 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 23 |  | eleq12 | ⊢ ( ( ( 𝑏 ‘ 𝑧 )  =  1o  ∧  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  ↔  1o  ∈  1o ) ) | 
						
							| 24 | 23 | biimpd | ⊢ ( ( ( 𝑏 ‘ 𝑧 )  =  1o  ∧  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  →  1o  ∈  1o ) ) | 
						
							| 25 | 24 | expcom | ⊢ ( ( 𝑐 ‘ 𝑧 )  =  1o  →  ( ( 𝑏 ‘ 𝑧 )  =  1o  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  →  1o  ∈  1o ) ) ) | 
						
							| 26 | 25 | com3r | ⊢ ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  →  ( ( 𝑐 ‘ 𝑧 )  =  1o  →  ( ( 𝑏 ‘ 𝑧 )  =  1o  →  1o  ∈  1o ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  ∧  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ( ( 𝑏 ‘ 𝑧 )  =  1o  →  1o  ∈  1o ) ) | 
						
							| 28 | 27 | adantll | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  ∧  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ( ( 𝑏 ‘ 𝑧 )  =  1o  →  1o  ∈  1o ) ) | 
						
							| 29 | 22 28 | mtoi | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  ∧  ( 𝑐 ‘ 𝑧 )  =  1o )  →  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) | 
						
							| 30 | 20 29 | mpdan | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  →  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) | 
						
							| 31 | 20 30 | jca | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) )  →  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 32 |  | elpri | ⊢ ( ( 𝑏 ‘ 𝑧 )  ∈  { ∅ ,  1o }  →  ( ( 𝑏 ‘ 𝑧 )  =  ∅  ∨  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 33 | 32 16 | eleq2s | ⊢ ( ( 𝑏 ‘ 𝑧 )  ∈  2o  →  ( ( 𝑏 ‘ 𝑧 )  =  ∅  ∨  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  →  ( ( 𝑏 ‘ 𝑧 )  =  ∅  ∨  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 35 |  | orel2 | ⊢ ( ¬  ( 𝑏 ‘ 𝑧 )  =  1o  →  ( ( ( 𝑏 ‘ 𝑧 )  =  ∅  ∨  ( 𝑏 ‘ 𝑧 )  =  1o )  →  ( 𝑏 ‘ 𝑧 )  =  ∅ ) ) | 
						
							| 36 | 34 35 | mpan9 | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o )  →  ( 𝑏 ‘ 𝑧 )  =  ∅ ) | 
						
							| 37 | 36 | adantrl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) )  →  ( 𝑏 ‘ 𝑧 )  =  ∅ ) | 
						
							| 38 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 39 | 37 38 | eqeltrdi | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) )  →  ( 𝑏 ‘ 𝑧 )  ∈  1o ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) )  →  ( 𝑐 ‘ 𝑧 )  =  1o ) | 
						
							| 41 | 39 40 | eleqtrrd | ⊢ ( ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  ∧  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) )  →  ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 ) ) | 
						
							| 42 | 31 41 | impbida | ⊢ ( ( ( 𝑏 ‘ 𝑧 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑧 )  ∈  2o )  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  ↔  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) ) ) | 
						
							| 43 | 9 12 42 | syl2anc | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  ↔  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) ) ) | 
						
							| 44 |  | simplrr | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 45 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑐  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ↔  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 46 | 44 45 | sylancom | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ↔  ( 𝑐 ‘ 𝑧 )  =  1o ) ) | 
						
							| 47 |  | simplrl | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  𝑏  ∈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 48 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 49 | 47 48 | sylancom | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑧  ∈  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 50 | 49 | notbid | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 )  ↔  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) ) | 
						
							| 51 | 46 50 | anbi12d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ↔  ( ( 𝑐 ‘ 𝑧 )  =  1o  ∧  ¬  ( 𝑏 ‘ 𝑧 )  =  1o ) ) ) | 
						
							| 52 | 43 51 | bitr4d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑏 ‘ 𝑧 )  ∈  ( 𝑐 ‘ 𝑧 )  ↔  ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 53 | 6 52 | bitrid | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ↔  ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 54 | 8 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑏 ‘ 𝑤 )  ∈  2o ) | 
						
							| 55 | 11 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑐 ‘ 𝑤 )  ∈  2o ) | 
						
							| 56 |  | eqeq1 | ⊢ ( ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 )  →  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 57 |  | simplr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑏 ‘ 𝑤 )  =  ∅ ) | 
						
							| 58 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 59 | 58 | nesymi | ⊢ ¬  ∅  =  1o | 
						
							| 60 |  | eqeq1 | ⊢ ( ( 𝑏 ‘ 𝑤 )  =  ∅  →  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ∅  =  1o ) ) | 
						
							| 61 | 59 60 | mtbiri | ⊢ ( ( 𝑏 ‘ 𝑤 )  =  ∅  →  ¬  ( 𝑏 ‘ 𝑤 )  =  1o ) | 
						
							| 62 | 61 | ad2antlr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ¬  ( 𝑏 ‘ 𝑤 )  =  1o ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 64 | 62 63 | mtbid | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ¬  ( 𝑐 ‘ 𝑤 )  =  1o ) | 
						
							| 65 |  | elpri | ⊢ ( ( 𝑐 ‘ 𝑤 )  ∈  { ∅ ,  1o }  →  ( ( 𝑐 ‘ 𝑤 )  =  ∅  ∨  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 66 | 65 16 | eleq2s | ⊢ ( ( 𝑐 ‘ 𝑤 )  ∈  2o  →  ( ( 𝑐 ‘ 𝑤 )  =  ∅  ∨  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 67 | 66 | ad3antlr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( ( 𝑐 ‘ 𝑤 )  =  ∅  ∨  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 68 |  | orel2 | ⊢ ( ¬  ( 𝑐 ‘ 𝑤 )  =  1o  →  ( ( ( 𝑐 ‘ 𝑤 )  =  ∅  ∨  ( 𝑐 ‘ 𝑤 )  =  1o )  →  ( 𝑐 ‘ 𝑤 )  =  ∅ ) ) | 
						
							| 69 | 64 67 68 | sylc | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑐 ‘ 𝑤 )  =  ∅ ) | 
						
							| 70 | 57 69 | eqtr4d | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) | 
						
							| 71 | 70 | ex | ⊢ ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  ∅ )  →  ( ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o )  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) | 
						
							| 72 |  | simplr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  1o )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑏 ‘ 𝑤 )  =  1o ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  1o )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 74 | 72 73 | mpbid | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  1o )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑐 ‘ 𝑤 )  =  1o ) | 
						
							| 75 | 72 74 | eqtr4d | ⊢ ( ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  1o )  ∧  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) )  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  ∧  ( 𝑏 ‘ 𝑤 )  =  1o )  →  ( ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o )  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) | 
						
							| 77 |  | elpri | ⊢ ( ( 𝑏 ‘ 𝑤 )  ∈  { ∅ ,  1o }  →  ( ( 𝑏 ‘ 𝑤 )  =  ∅  ∨  ( 𝑏 ‘ 𝑤 )  =  1o ) ) | 
						
							| 78 | 77 16 | eleq2s | ⊢ ( ( 𝑏 ‘ 𝑤 )  ∈  2o  →  ( ( 𝑏 ‘ 𝑤 )  =  ∅  ∨  ( 𝑏 ‘ 𝑤 )  =  1o ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  →  ( ( 𝑏 ‘ 𝑤 )  =  ∅  ∨  ( 𝑏 ‘ 𝑤 )  =  1o ) ) | 
						
							| 80 | 71 76 79 | mpjaodan | ⊢ ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  →  ( ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o )  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) | 
						
							| 81 | 56 80 | impbid2 | ⊢ ( ( ( 𝑏 ‘ 𝑤 )  ∈  2o  ∧  ( 𝑐 ‘ 𝑤 )  ∈  2o )  →  ( ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 )  ↔  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) ) | 
						
							| 82 | 54 55 81 | syl2anc | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 )  ↔  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) ) | 
						
							| 83 |  | simplrl | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  𝑏  ∈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 84 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝑏 ‘ 𝑤 )  =  1o ) ) | 
						
							| 85 | 83 84 | sylancom | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝑏 ‘ 𝑤 )  =  1o ) ) | 
						
							| 86 |  | simplrr | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) | 
						
							| 87 | 3 | pw2f1o2val2 | ⊢ ( ( 𝑐  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑐 )  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 88 | 86 87 | sylancom | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑐 )  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) | 
						
							| 89 | 85 88 | bibi12d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) )  ↔  ( ( 𝑏 ‘ 𝑤 )  =  1o  ↔  ( 𝑐 ‘ 𝑤 )  =  1o ) ) ) | 
						
							| 90 | 82 89 | bitr4d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 )  ↔  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 91 | 90 | imbi2d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) )  ↔  ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 92 | 91 | ralbidva | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 94 | 53 93 | anbi12d | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) )  ↔  ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) | 
						
							| 95 | 94 | rexbidva | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) | 
						
							| 96 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 97 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 98 |  | fveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥 ‘ 𝑧 )  =  ( 𝑏 ‘ 𝑧 ) ) | 
						
							| 99 |  | fveq1 | ⊢ ( 𝑦  =  𝑐  →  ( 𝑦 ‘ 𝑧 )  =  ( 𝑐 ‘ 𝑧 ) ) | 
						
							| 100 | 98 99 | breqan12d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ↔  ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 ) ) ) | 
						
							| 101 |  | fveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑏 ‘ 𝑤 ) ) | 
						
							| 102 |  | fveq1 | ⊢ ( 𝑦  =  𝑐  →  ( 𝑦 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) | 
						
							| 103 | 101 102 | eqeqan12d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 )  ↔  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) | 
						
							| 104 | 103 | imbi2d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) ) | 
						
							| 105 | 104 | ralbidv | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) ) | 
						
							| 106 | 100 105 | anbi12d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) ) ) | 
						
							| 107 | 106 | rexbidv | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  𝑐 )  →  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑥 ‘ 𝑧 )  E  ( 𝑦 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) ) ) | 
						
							| 108 | 96 97 107 2 | braba | ⊢ ( 𝑏 𝑈 𝑐  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑏 ‘ 𝑧 )  E  ( 𝑐 ‘ 𝑧 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑏 ‘ 𝑤 )  =  ( 𝑐 ‘ 𝑤 ) ) ) ) | 
						
							| 109 |  | fvex | ⊢ ( 𝐹 ‘ 𝑏 )  ∈  V | 
						
							| 110 |  | fvex | ⊢ ( 𝐹 ‘ 𝑐 )  ∈  V | 
						
							| 111 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 112 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 113 | 112 | notbid | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  →  ( ¬  𝑧  ∈  𝑥  ↔  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 114 | 111 113 | bi2anan9r | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ( 𝑧  ∈  𝑦  ∧  ¬  𝑧  ∈  𝑥 )  ↔  ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 115 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 116 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑐 )  →  ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 117 | 115 116 | bi2bian9 | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 )  ↔  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 118 | 117 | imbi2d | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) )  ↔  ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 119 | 118 | ralbidv | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 120 | 114 119 | anbi12d | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ( ( 𝑧  ∈  𝑦  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) ) )  ↔  ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) | 
						
							| 121 | 120 | rexbidv | ⊢ ( ( 𝑥  =  ( 𝐹 ‘ 𝑏 )  ∧  𝑦  =  ( 𝐹 ‘ 𝑐 ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  𝑦  ∧  ¬  𝑧  ∈  𝑥 )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) ) )  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) | 
						
							| 122 | 109 110 121 1 | braba | ⊢ ( ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 )  ↔  ∃ 𝑧  ∈  𝐴 ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑐 )  ∧  ¬  𝑧  ∈  ( 𝐹 ‘ 𝑏 ) )  ∧  ∀ 𝑤  ∈  𝐴 ( 𝑤 𝑅 𝑧  →  ( 𝑤  ∈  ( 𝐹 ‘ 𝑏 )  ↔  𝑤  ∈  ( 𝐹 ‘ 𝑐 ) ) ) ) ) | 
						
							| 123 | 95 108 122 | 3bitr4g | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑏  ∈  ( 2o  ↑m  𝐴 )  ∧  𝑐  ∈  ( 2o  ↑m  𝐴 ) ) )  →  ( 𝑏 𝑈 𝑐  ↔  ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 124 | 123 | ralrimivva | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑏  ∈  ( 2o  ↑m  𝐴 ) ∀ 𝑐  ∈  ( 2o  ↑m  𝐴 ) ( 𝑏 𝑈 𝑐  ↔  ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 125 |  | df-isom | ⊢ ( 𝐹  Isom  𝑈 ,  𝑇 ( ( 2o  ↑m  𝐴 ) ,  𝒫  𝐴 )  ↔  ( 𝐹 : ( 2o  ↑m  𝐴 ) –1-1-onto→ 𝒫  𝐴  ∧  ∀ 𝑏  ∈  ( 2o  ↑m  𝐴 ) ∀ 𝑐  ∈  ( 2o  ↑m  𝐴 ) ( 𝑏 𝑈 𝑐  ↔  ( 𝐹 ‘ 𝑏 ) 𝑇 ( 𝐹 ‘ 𝑐 ) ) ) ) | 
						
							| 126 | 4 124 125 | sylanbrc | ⊢ ( 𝐴  ∈  V  →  𝐹  Isom  𝑈 ,  𝑇 ( ( 2o  ↑m  𝐴 ) ,  𝒫  𝐴 ) ) |