Description: Subset theorem for the well-ordering predicate. Exercise 4 of TakeutiZaring p. 31. (Contributed by NM, 19-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | wess | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 We 𝐵 → 𝑅 We 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) | |
2 | soss | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Or 𝐵 → 𝑅 Or 𝐴 ) ) | |
3 | 1 2 | anim12d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) ) |
4 | df-we | ⊢ ( 𝑅 We 𝐵 ↔ ( 𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵 ) ) | |
5 | df-we | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) | |
6 | 3 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 We 𝐵 → 𝑅 We 𝐴 ) ) |