Metamath Proof Explorer


Theorem wess

Description: Subset theorem for the well-ordering predicate. Exercise 4 of TakeutiZaring p. 31. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion wess ( 𝐴𝐵 → ( 𝑅 We 𝐵𝑅 We 𝐴 ) )

Proof

Step Hyp Ref Expression
1 frss ( 𝐴𝐵 → ( 𝑅 Fr 𝐵𝑅 Fr 𝐴 ) )
2 soss ( 𝐴𝐵 → ( 𝑅 Or 𝐵𝑅 Or 𝐴 ) )
3 1 2 anim12d ( 𝐴𝐵 → ( ( 𝑅 Fr 𝐵𝑅 Or 𝐵 ) → ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) ) )
4 df-we ( 𝑅 We 𝐵 ↔ ( 𝑅 Fr 𝐵𝑅 Or 𝐵 ) )
5 df-we ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴𝑅 Or 𝐴 ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑅 We 𝐵𝑅 We 𝐴 ) )