Metamath Proof Explorer


Theorem wessf1ornlem

Description: Given a function F on a well-ordered domain A there exists a subset of A such that F restricted to such subset is injective and onto the range of F (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses wessf1ornlem.f ( 𝜑𝐹 Fn 𝐴 )
wessf1ornlem.a ( 𝜑𝐴𝑉 )
wessf1ornlem.r ( 𝜑𝑅 We 𝐴 )
wessf1ornlem.g 𝐺 = ( 𝑦 ∈ ran 𝐹 ↦ ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) )
Assertion wessf1ornlem ( 𝜑 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐹𝑥 ) : 𝑥1-1-onto→ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 wessf1ornlem.f ( 𝜑𝐹 Fn 𝐴 )
2 wessf1ornlem.a ( 𝜑𝐴𝑉 )
3 wessf1ornlem.r ( 𝜑𝑅 We 𝐴 )
4 wessf1ornlem.g 𝐺 = ( 𝑦 ∈ ran 𝐹 ↦ ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) )
5 cnvimass ( 𝐹 “ { 𝑢 } ) ⊆ dom 𝐹
6 1 fndmd ( 𝜑 → dom 𝐹 = 𝐴 )
7 6 adantr ( ( 𝜑𝑢 ∈ ran 𝐹 ) → dom 𝐹 = 𝐴 )
8 5 7 sseqtrid ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐹 “ { 𝑢 } ) ⊆ 𝐴 )
9 3 adantr ( ( 𝜑𝑢 ∈ ran 𝐹 ) → 𝑅 We 𝐴 )
10 5 6 sseqtrid ( 𝜑 → ( 𝐹 “ { 𝑢 } ) ⊆ 𝐴 )
11 2 10 ssexd ( 𝜑 → ( 𝐹 “ { 𝑢 } ) ∈ V )
12 11 adantr ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐹 “ { 𝑢 } ) ∈ V )
13 inisegn0 ( 𝑢 ∈ ran 𝐹 ↔ ( 𝐹 “ { 𝑢 } ) ≠ ∅ )
14 13 biimpi ( 𝑢 ∈ ran 𝐹 → ( 𝐹 “ { 𝑢 } ) ≠ ∅ )
15 14 adantl ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐹 “ { 𝑢 } ) ≠ ∅ )
16 wereu ( ( 𝑅 We 𝐴 ∧ ( ( 𝐹 “ { 𝑢 } ) ∈ V ∧ ( 𝐹 “ { 𝑢 } ) ⊆ 𝐴 ∧ ( 𝐹 “ { 𝑢 } ) ≠ ∅ ) ) → ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 )
17 9 12 8 15 16 syl13anc ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 )
18 riotacl ( ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 → ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ ( 𝐹 “ { 𝑢 } ) )
19 17 18 syl ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ ( 𝐹 “ { 𝑢 } ) )
20 8 19 sseldd ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 )
21 20 ralrimiva ( 𝜑 → ∀ 𝑢 ∈ ran 𝐹 ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 )
22 sneq ( 𝑦 = 𝑢 → { 𝑦 } = { 𝑢 } )
23 22 imaeq2d ( 𝑦 = 𝑢 → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { 𝑢 } ) )
24 23 raleqdv ( 𝑦 = 𝑢 → ( ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑧 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) )
25 23 24 riotaeqbidv ( 𝑦 = 𝑢 → ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) = ( 𝑥 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) )
26 breq1 ( 𝑧 = 𝑡 → ( 𝑧 𝑅 𝑥𝑡 𝑅 𝑥 ) )
27 26 notbid ( 𝑧 = 𝑡 → ( ¬ 𝑧 𝑅 𝑥 ↔ ¬ 𝑡 𝑅 𝑥 ) )
28 27 cbvralvw ( ∀ 𝑧 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑥 )
29 breq2 ( 𝑥 = 𝑣 → ( 𝑡 𝑅 𝑥𝑡 𝑅 𝑣 ) )
30 29 notbid ( 𝑥 = 𝑣 → ( ¬ 𝑡 𝑅 𝑥 ↔ ¬ 𝑡 𝑅 𝑣 ) )
31 30 ralbidv ( 𝑥 = 𝑣 → ( ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
32 28 31 syl5bb ( 𝑥 = 𝑣 → ( ∀ 𝑧 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
33 32 cbvriotavw ( 𝑥 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 )
34 25 33 eqtrdi ( 𝑦 = 𝑢 → ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
35 34 cbvmptv ( 𝑦 ∈ ran 𝐹 ↦ ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) ) = ( 𝑢 ∈ ran 𝐹 ↦ ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
36 4 35 eqtri 𝐺 = ( 𝑢 ∈ ran 𝐹 ↦ ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
37 36 rnmptss ( ∀ 𝑢 ∈ ran 𝐹 ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 → ran 𝐺𝐴 )
38 21 37 syl ( 𝜑 → ran 𝐺𝐴 )
39 2 38 sselpwd ( 𝜑 → ran 𝐺 ∈ 𝒫 𝐴 )
40 dffn3 ( 𝐹 Fn 𝐴𝐹 : 𝐴 ⟶ ran 𝐹 )
41 1 40 sylib ( 𝜑𝐹 : 𝐴 ⟶ ran 𝐹 )
42 41 38 fssresd ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 )
43 fvres ( 𝑤 ∈ ran 𝐺 → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( 𝐹𝑤 ) )
44 43 eqcomd ( 𝑤 ∈ ran 𝐺 → ( 𝐹𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) )
45 44 ad2antrr ( ( ( 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) )
46 simpr ( ( ( 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) )
47 fvres ( 𝑡 ∈ ran 𝐺 → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) = ( 𝐹𝑡 ) )
48 47 ad2antlr ( ( ( 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) = ( 𝐹𝑡 ) )
49 45 46 48 3eqtrd ( ( ( 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹𝑤 ) = ( 𝐹𝑡 ) )
50 49 3adantl1 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹𝑤 ) = ( 𝐹𝑡 ) )
51 simpl1 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝜑 )
52 simpl3 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑡 ∈ ran 𝐺 )
53 simpl2 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑤 ∈ ran 𝐺 )
54 id ( ( 𝐹𝑤 ) = ( 𝐹𝑡 ) → ( 𝐹𝑤 ) = ( 𝐹𝑡 ) )
55 54 eqcomd ( ( 𝐹𝑤 ) = ( 𝐹𝑡 ) → ( 𝐹𝑡 ) = ( 𝐹𝑤 ) )
56 55 adantl ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ( 𝐹𝑡 ) = ( 𝐹𝑤 ) )
57 eleq1w ( 𝑏 = 𝑤 → ( 𝑏 ∈ ran 𝐺𝑤 ∈ ran 𝐺 ) )
58 57 3anbi3d ( 𝑏 = 𝑤 → ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺 ) ) )
59 fveq2 ( 𝑏 = 𝑤 → ( 𝐹𝑏 ) = ( 𝐹𝑤 ) )
60 59 eqeq2d ( 𝑏 = 𝑤 → ( ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ↔ ( 𝐹𝑡 ) = ( 𝐹𝑤 ) ) )
61 58 60 anbi12d ( 𝑏 = 𝑤 → ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) ↔ ( ( 𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑤 ) ) ) )
62 breq1 ( 𝑏 = 𝑤 → ( 𝑏 𝑅 𝑡𝑤 𝑅 𝑡 ) )
63 62 notbid ( 𝑏 = 𝑤 → ( ¬ 𝑏 𝑅 𝑡 ↔ ¬ 𝑤 𝑅 𝑡 ) )
64 61 63 imbi12d ( 𝑏 = 𝑤 → ( ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 ) ↔ ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑤 ) ) → ¬ 𝑤 𝑅 𝑡 ) ) )
65 eleq1w ( 𝑎 = 𝑡 → ( 𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) )
66 65 3anbi2d ( 𝑎 = 𝑡 → ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ) )
67 fveqeq2 ( 𝑎 = 𝑡 → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) )
68 66 67 anbi12d ( 𝑎 = 𝑡 → ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ↔ ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) ) )
69 breq2 ( 𝑎 = 𝑡 → ( 𝑏 𝑅 𝑎𝑏 𝑅 𝑡 ) )
70 69 notbid ( 𝑎 = 𝑡 → ( ¬ 𝑏 𝑅 𝑎 ↔ ¬ 𝑏 𝑅 𝑡 ) )
71 68 70 imbi12d ( 𝑎 = 𝑡 → ( ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 ) ↔ ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 ) ) )
72 eleq1w ( 𝑡 = 𝑏 → ( 𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) )
73 72 3anbi3d ( 𝑡 = 𝑏 → ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ↔ ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ) )
74 fveq2 ( 𝑡 = 𝑏 → ( 𝐹𝑡 ) = ( 𝐹𝑏 ) )
75 74 eqeq2d ( 𝑡 = 𝑏 → ( ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ↔ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) )
76 73 75 anbi12d ( 𝑡 = 𝑏 → ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) ↔ ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) ) )
77 breq1 ( 𝑡 = 𝑏 → ( 𝑡 𝑅 𝑎𝑏 𝑅 𝑎 ) )
78 77 notbid ( 𝑡 = 𝑏 → ( ¬ 𝑡 𝑅 𝑎 ↔ ¬ 𝑏 𝑅 𝑎 ) )
79 76 78 imbi12d ( 𝑡 = 𝑏 → ( ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 ) ↔ ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 ) ) )
80 eleq1w ( 𝑤 = 𝑎 → ( 𝑤 ∈ ran 𝐺𝑎 ∈ ran 𝐺 ) )
81 80 3anbi2d ( 𝑤 = 𝑎 → ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ↔ ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ) )
82 fveqeq2 ( 𝑤 = 𝑎 → ( ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ↔ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) )
83 81 82 anbi12d ( 𝑤 = 𝑎 → ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ↔ ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) ) )
84 breq2 ( 𝑤 = 𝑎 → ( 𝑡 𝑅 𝑤𝑡 𝑅 𝑎 ) )
85 84 notbid ( 𝑤 = 𝑎 → ( ¬ 𝑡 𝑅 𝑤 ↔ ¬ 𝑡 𝑅 𝑎 ) )
86 83 85 imbi12d ( 𝑤 = 𝑎 → ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ¬ 𝑡 𝑅 𝑤 ) ↔ ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 ) ) )
87 36 elrnmpt ( 𝑤 ∈ V → ( 𝑤 ∈ ran 𝐺 ↔ ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) )
88 87 elv ( 𝑤 ∈ ran 𝐺 ↔ ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
89 88 biimpi ( 𝑤 ∈ ran 𝐺 → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
90 89 adantr ( ( 𝑤 ∈ ran 𝐺 ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
91 90 3ad2antl2 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
92 simp3 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
93 92 eqcomd ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 )
94 simp11 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝜑 )
95 id ( 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
96 breq2 ( 𝑣 = 𝑤 → ( 𝑡 𝑅 𝑣𝑡 𝑅 𝑤 ) )
97 96 notbid ( 𝑣 = 𝑤 → ( ¬ 𝑡 𝑅 𝑣 ↔ ¬ 𝑡 𝑅 𝑤 ) )
98 97 ralbidv ( 𝑣 = 𝑤 → ( ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ↔ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) )
99 98 cbvriotavw ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 )
100 95 99 eqtr2di ( 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 )
101 100 3ad2ant3 ( ( 𝜑𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 )
102 98 cbvreuvw ( ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ↔ ∃! 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 )
103 17 102 sylib ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ∃! 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 )
104 riota1 ( ∃! 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 → ( ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) )
105 103 104 syl ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) )
106 105 3adant3 ( ( 𝜑𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) )
107 101 106 mpbird ( ( 𝜑𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) )
108 107 simpld ( ( 𝜑𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) )
109 94 108 syld3an1 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) )
110 simp2 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑢 ∈ ran 𝐹 )
111 94 110 17 syl2anc ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 )
112 98 riota2 ( ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ∧ ∃! 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ( ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ↔ ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 ) )
113 109 111 112 syl2anc ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ↔ ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 ) )
114 93 113 mpbird ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 )
115 114 3adant1r ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 )
116 38 sselda ( ( 𝜑𝑡 ∈ ran 𝐺 ) → 𝑡𝐴 )
117 116 3adant2 ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) → 𝑡𝐴 )
118 117 adantr ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑡𝐴 )
119 118 3ad2ant1 ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑡𝐴 )
120 55 ad2antlr ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐹𝑡 ) = ( 𝐹𝑤 ) )
121 120 3adant3 ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹𝑡 ) = ( 𝐹𝑤 ) )
122 fniniseg ( 𝐹 Fn 𝐴 → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ) )
123 94 1 122 3syl ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ) )
124 109 123 mpbid ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) )
125 124 simprd ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹𝑤 ) = 𝑢 )
126 125 3adant1r ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹𝑤 ) = 𝑢 )
127 121 126 eqtrd ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹𝑡 ) = 𝑢 )
128 fniniseg ( 𝐹 Fn 𝐴 → ( 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑡𝐴 ∧ ( 𝐹𝑡 ) = 𝑢 ) ) )
129 1 128 syl ( 𝜑 → ( 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑡𝐴 ∧ ( 𝐹𝑡 ) = 𝑢 ) ) )
130 129 3ad2ant1 ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) → ( 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑡𝐴 ∧ ( 𝐹𝑡 ) = 𝑢 ) ) )
131 130 ad2antrr ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑡𝐴 ∧ ( 𝐹𝑡 ) = 𝑢 ) ) )
132 131 3adant3 ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑡𝐴 ∧ ( 𝐹𝑡 ) = 𝑢 ) ) )
133 119 127 132 mpbir2and ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) )
134 rspa ( ( ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ) → ¬ 𝑡 𝑅 𝑤 )
135 115 133 134 syl2anc ( ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ¬ 𝑡 𝑅 𝑤 )
136 135 rexlimdv3a ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ( ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ¬ 𝑡 𝑅 𝑤 ) )
137 91 136 mpd ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ¬ 𝑡 𝑅 𝑤 )
138 86 137 chvarvv ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 )
139 79 138 chvarvv ( ( ( 𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 )
140 71 139 chvarvv ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 )
141 64 140 chvarvv ( ( ( 𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹𝑡 ) = ( 𝐹𝑤 ) ) → ¬ 𝑤 𝑅 𝑡 )
142 51 52 53 56 141 syl31anc ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ¬ 𝑤 𝑅 𝑡 )
143 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
144 3 143 syl ( 𝜑𝑅 Or 𝐴 )
145 144 adantr ( ( 𝜑 ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑅 Or 𝐴 )
146 145 3ad2antl1 ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑅 Or 𝐴 )
147 38 sselda ( ( 𝜑𝑤 ∈ ran 𝐺 ) → 𝑤𝐴 )
148 147 3adant3 ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) → 𝑤𝐴 )
149 148 adantr ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑤𝐴 )
150 sotrieq2 ( ( 𝑅 Or 𝐴 ∧ ( 𝑤𝐴𝑡𝐴 ) ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 𝑅 𝑡 ∧ ¬ 𝑡 𝑅 𝑤 ) ) )
151 146 149 118 150 syl12anc ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 𝑅 𝑡 ∧ ¬ 𝑡 𝑅 𝑤 ) ) )
152 142 137 151 mpbir2and ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹𝑤 ) = ( 𝐹𝑡 ) ) → 𝑤 = 𝑡 )
153 50 152 syldan ( ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → 𝑤 = 𝑡 )
154 153 ex ( ( 𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) → ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) )
155 154 3expb ( ( 𝜑 ∧ ( 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ) ) → ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) )
156 155 ralrimivva ( 𝜑 → ∀ 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) )
157 dff13 ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 ∧ ∀ 𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺 ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) ) )
158 42 156 157 sylanbrc ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1→ ran 𝐹 )
159 riotaex ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V
160 159 rgenw 𝑢 ∈ ran 𝐹 ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V
161 36 fnmpt ( ∀ 𝑢 ∈ ran 𝐹 ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V → 𝐺 Fn ran 𝐹 )
162 160 161 mp1i ( 𝜑𝐺 Fn ran 𝐹 )
163 dffn3 ( 𝐺 Fn ran 𝐹𝐺 : ran 𝐹 ⟶ ran 𝐺 )
164 162 163 sylib ( 𝜑𝐺 : ran 𝐹 ⟶ ran 𝐺 )
165 164 ffvelrnda ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐺𝑢 ) ∈ ran 𝐺 )
166 165 fvresd ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺𝑢 ) ) = ( 𝐹 ‘ ( 𝐺𝑢 ) ) )
167 simpr ( ( 𝜑𝑢 ∈ ran 𝐹 ) → 𝑢 ∈ ran 𝐹 )
168 159 a1i ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V )
169 4 34 167 168 fvmptd3 ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐺𝑢 ) = ( 𝑣 ∈ ( 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) )
170 169 19 eqeltrd ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) )
171 fvex ( 𝐺𝑢 ) ∈ V
172 eleq1 ( 𝑤 = ( 𝐺𝑢 ) → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) ) )
173 eleq1 ( 𝑤 = ( 𝐺𝑢 ) → ( 𝑤𝐴 ↔ ( 𝐺𝑢 ) ∈ 𝐴 ) )
174 fveqeq2 ( 𝑤 = ( 𝐺𝑢 ) → ( ( 𝐹𝑤 ) = 𝑢 ↔ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) )
175 173 174 anbi12d ( 𝑤 = ( 𝐺𝑢 ) → ( ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ↔ ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) ) )
176 172 175 bibi12d ( 𝑤 = ( 𝐺𝑢 ) → ( ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ) ↔ ( ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) ) ) )
177 176 imbi2d ( 𝑤 = ( 𝐺𝑢 ) → ( ( 𝜑 → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ) ) ↔ ( 𝜑 → ( ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) ) ) ) )
178 1 122 syl ( 𝜑 → ( 𝑤 ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( 𝑤𝐴 ∧ ( 𝐹𝑤 ) = 𝑢 ) ) )
179 171 177 178 vtocl ( 𝜑 → ( ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) ) )
180 179 adantr ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( ( 𝐺𝑢 ) ∈ ( 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) ) )
181 170 180 mpbid ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( ( 𝐺𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 ) )
182 181 simprd ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ( 𝐹 ‘ ( 𝐺𝑢 ) ) = 𝑢 )
183 166 182 eqtr2d ( ( 𝜑𝑢 ∈ ran 𝐹 ) → 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺𝑢 ) ) )
184 fveq2 ( 𝑤 = ( 𝐺𝑢 ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺𝑢 ) ) )
185 184 rspceeqv ( ( ( 𝐺𝑢 ) ∈ ran 𝐺𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺𝑢 ) ) ) → ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) )
186 165 183 185 syl2anc ( ( 𝜑𝑢 ∈ ran 𝐹 ) → ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) )
187 186 ralrimiva ( 𝜑 → ∀ 𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) )
188 dffo3 ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺onto→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 ∧ ∀ 𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) )
189 42 187 188 sylanbrc ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺onto→ ran 𝐹 )
190 df-f1o ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1-onto→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1→ ran 𝐹 ∧ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺onto→ ran 𝐹 ) )
191 158 189 190 sylanbrc ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1-onto→ ran 𝐹 )
192 reseq2 ( 𝑣 = ran 𝐺 → ( 𝐹𝑣 ) = ( 𝐹 ↾ ran 𝐺 ) )
193 id ( 𝑣 = ran 𝐺𝑣 = ran 𝐺 )
194 eqidd ( 𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹 )
195 192 193 194 f1oeq123d ( 𝑣 = ran 𝐺 → ( ( 𝐹𝑣 ) : 𝑣1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1-onto→ ran 𝐹 ) )
196 195 rspcev ( ( ran 𝐺 ∈ 𝒫 𝐴 ∧ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺1-1-onto→ ran 𝐹 ) → ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹𝑣 ) : 𝑣1-1-onto→ ran 𝐹 )
197 39 191 196 syl2anc ( 𝜑 → ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹𝑣 ) : 𝑣1-1-onto→ ran 𝐹 )
198 reseq2 ( 𝑣 = 𝑥 → ( 𝐹𝑣 ) = ( 𝐹𝑥 ) )
199 id ( 𝑣 = 𝑥𝑣 = 𝑥 )
200 eqidd ( 𝑣 = 𝑥 → ran 𝐹 = ran 𝐹 )
201 198 199 200 f1oeq123d ( 𝑣 = 𝑥 → ( ( 𝐹𝑣 ) : 𝑣1-1-onto→ ran 𝐹 ↔ ( 𝐹𝑥 ) : 𝑥1-1-onto→ ran 𝐹 ) )
202 201 cbvrexvw ( ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹𝑣 ) : 𝑣1-1-onto→ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐹𝑥 ) : 𝑥1-1-onto→ ran 𝐹 )
203 197 202 sylib ( 𝜑 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐹𝑥 ) : 𝑥1-1-onto→ ran 𝐹 )