Step |
Hyp |
Ref |
Expression |
1 |
|
wessf1ornlem.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
wessf1ornlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
wessf1ornlem.r |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
4 |
|
wessf1ornlem.g |
⊢ 𝐺 = ( 𝑦 ∈ ran 𝐹 ↦ ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) ) |
5 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝑢 } ) ⊆ dom 𝐹 |
6 |
1
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → dom 𝐹 = 𝐴 ) |
8 |
5 7
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ { 𝑢 } ) ⊆ 𝐴 ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → 𝑅 We 𝐴 ) |
10 |
5 6
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑢 } ) ⊆ 𝐴 ) |
11 |
2 10
|
ssexd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑢 } ) ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ { 𝑢 } ) ∈ V ) |
13 |
|
inisegn0 |
⊢ ( 𝑢 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑢 } ) ≠ ∅ ) |
14 |
13
|
biimpi |
⊢ ( 𝑢 ∈ ran 𝐹 → ( ◡ 𝐹 “ { 𝑢 } ) ≠ ∅ ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ { 𝑢 } ) ≠ ∅ ) |
16 |
|
wereu |
⊢ ( ( 𝑅 We 𝐴 ∧ ( ( ◡ 𝐹 “ { 𝑢 } ) ∈ V ∧ ( ◡ 𝐹 “ { 𝑢 } ) ⊆ 𝐴 ∧ ( ◡ 𝐹 “ { 𝑢 } ) ≠ ∅ ) ) → ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) |
17 |
9 12 8 15 16
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) |
18 |
|
riotacl |
⊢ ( ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 → ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
20 |
8 19
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 ) |
21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ran 𝐹 ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 ) |
22 |
|
sneq |
⊢ ( 𝑦 = 𝑢 → { 𝑦 } = { 𝑢 } ) |
23 |
22
|
imaeq2d |
⊢ ( 𝑦 = 𝑢 → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { 𝑢 } ) ) |
24 |
23
|
raleqdv |
⊢ ( 𝑦 = 𝑢 → ( ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) ) |
25 |
23 24
|
riotaeqbidv |
⊢ ( 𝑦 = 𝑢 → ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) = ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) ) |
26 |
|
breq1 |
⊢ ( 𝑧 = 𝑡 → ( 𝑧 𝑅 𝑥 ↔ 𝑡 𝑅 𝑥 ) ) |
27 |
26
|
notbid |
⊢ ( 𝑧 = 𝑡 → ( ¬ 𝑧 𝑅 𝑥 ↔ ¬ 𝑡 𝑅 𝑥 ) ) |
28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑥 ) |
29 |
|
breq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝑡 𝑅 𝑥 ↔ 𝑡 𝑅 𝑣 ) ) |
30 |
29
|
notbid |
⊢ ( 𝑥 = 𝑣 → ( ¬ 𝑡 𝑅 𝑥 ↔ ¬ 𝑡 𝑅 𝑣 ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑥 = 𝑣 → ( ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
32 |
28 31
|
syl5bb |
⊢ ( 𝑥 = 𝑣 → ( ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
33 |
32
|
cbvriotavw |
⊢ ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑧 𝑅 𝑥 ) = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) |
34 |
25 33
|
eqtrdi |
⊢ ( 𝑦 = 𝑢 → ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
35 |
34
|
cbvmptv |
⊢ ( 𝑦 ∈ ran 𝐹 ↦ ( ℩ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ∀ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ¬ 𝑧 𝑅 𝑥 ) ) = ( 𝑢 ∈ ran 𝐹 ↦ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
36 |
4 35
|
eqtri |
⊢ 𝐺 = ( 𝑢 ∈ ran 𝐹 ↦ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
37 |
36
|
rnmptss |
⊢ ( ∀ 𝑢 ∈ ran 𝐹 ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ 𝐴 → ran 𝐺 ⊆ 𝐴 ) |
38 |
21 37
|
syl |
⊢ ( 𝜑 → ran 𝐺 ⊆ 𝐴 ) |
39 |
2 38
|
sselpwd |
⊢ ( 𝜑 → ran 𝐺 ∈ 𝒫 𝐴 ) |
40 |
|
dffn3 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
41 |
1 40
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
42 |
41 38
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 ) |
43 |
|
fvres |
⊢ ( 𝑤 ∈ ran 𝐺 → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
44 |
43
|
eqcomd |
⊢ ( 𝑤 ∈ ran 𝐺 → ( 𝐹 ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹 ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) |
46 |
|
simpr |
⊢ ( ( ( 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) |
47 |
|
fvres |
⊢ ( 𝑡 ∈ ran 𝐺 → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
49 |
45 46 48
|
3eqtrd |
⊢ ( ( ( 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) |
50 |
49
|
3adantl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) |
51 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝜑 ) |
52 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑡 ∈ ran 𝐺 ) |
53 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑤 ∈ ran 𝐺 ) |
54 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) |
55 |
54
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
57 |
|
eleq1w |
⊢ ( 𝑏 = 𝑤 → ( 𝑏 ∈ ran 𝐺 ↔ 𝑤 ∈ ran 𝐺 ) ) |
58 |
57
|
3anbi3d |
⊢ ( 𝑏 = 𝑤 → ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺 ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑏 = 𝑤 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑤 ) ) |
60 |
59
|
eqeq2d |
⊢ ( 𝑏 = 𝑤 → ( ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
61 |
58 60
|
anbi12d |
⊢ ( 𝑏 = 𝑤 → ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
62 |
|
breq1 |
⊢ ( 𝑏 = 𝑤 → ( 𝑏 𝑅 𝑡 ↔ 𝑤 𝑅 𝑡 ) ) |
63 |
62
|
notbid |
⊢ ( 𝑏 = 𝑤 → ( ¬ 𝑏 𝑅 𝑡 ↔ ¬ 𝑤 𝑅 𝑡 ) ) |
64 |
61 63
|
imbi12d |
⊢ ( 𝑏 = 𝑤 → ( ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑤 𝑅 𝑡 ) ) ) |
65 |
|
eleq1w |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 ∈ ran 𝐺 ↔ 𝑡 ∈ ran 𝐺 ) ) |
66 |
65
|
3anbi2d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ) ) |
67 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑡 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
68 |
66 67
|
anbi12d |
⊢ ( 𝑎 = 𝑡 → ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
69 |
|
breq2 |
⊢ ( 𝑎 = 𝑡 → ( 𝑏 𝑅 𝑎 ↔ 𝑏 𝑅 𝑡 ) ) |
70 |
69
|
notbid |
⊢ ( 𝑎 = 𝑡 → ( ¬ 𝑏 𝑅 𝑎 ↔ ¬ 𝑏 𝑅 𝑡 ) ) |
71 |
68 70
|
imbi12d |
⊢ ( 𝑎 = 𝑡 → ( ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 ) ) ) |
72 |
|
eleq1w |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ∈ ran 𝐺 ↔ 𝑏 ∈ ran 𝐺 ) ) |
73 |
72
|
3anbi3d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ) ) |
74 |
|
fveq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) |
75 |
74
|
eqeq2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
76 |
73 75
|
anbi12d |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
77 |
|
breq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 𝑅 𝑎 ↔ 𝑏 𝑅 𝑎 ) ) |
78 |
77
|
notbid |
⊢ ( 𝑡 = 𝑏 → ( ¬ 𝑡 𝑅 𝑎 ↔ ¬ 𝑏 𝑅 𝑎 ) ) |
79 |
76 78
|
imbi12d |
⊢ ( 𝑡 = 𝑏 → ( ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 ) ↔ ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 ) ) ) |
80 |
|
eleq1w |
⊢ ( 𝑤 = 𝑎 → ( 𝑤 ∈ ran 𝐺 ↔ 𝑎 ∈ ran 𝐺 ) ) |
81 |
80
|
3anbi2d |
⊢ ( 𝑤 = 𝑎 → ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ) ) |
82 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑎 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) ) |
83 |
81 82
|
anbi12d |
⊢ ( 𝑤 = 𝑎 → ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) ) ) |
84 |
|
breq2 |
⊢ ( 𝑤 = 𝑎 → ( 𝑡 𝑅 𝑤 ↔ 𝑡 𝑅 𝑎 ) ) |
85 |
84
|
notbid |
⊢ ( 𝑤 = 𝑎 → ( ¬ 𝑡 𝑅 𝑤 ↔ ¬ 𝑡 𝑅 𝑎 ) ) |
86 |
83 85
|
imbi12d |
⊢ ( 𝑤 = 𝑎 → ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑡 𝑅 𝑤 ) ↔ ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 ) ) ) |
87 |
36
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran 𝐺 ↔ ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) ) |
88 |
87
|
elv |
⊢ ( 𝑤 ∈ ran 𝐺 ↔ ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
89 |
88
|
biimpi |
⊢ ( 𝑤 ∈ ran 𝐺 → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝑤 ∈ ran 𝐺 ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
91 |
90
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
92 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
93 |
92
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 ) |
94 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝜑 ) |
95 |
|
id |
⊢ ( 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
96 |
|
breq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑡 𝑅 𝑣 ↔ 𝑡 𝑅 𝑤 ) ) |
97 |
96
|
notbid |
⊢ ( 𝑣 = 𝑤 → ( ¬ 𝑡 𝑅 𝑣 ↔ ¬ 𝑡 𝑅 𝑤 ) ) |
98 |
97
|
ralbidv |
⊢ ( 𝑣 = 𝑤 → ( ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ↔ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ) |
99 |
98
|
cbvriotavw |
⊢ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) |
100 |
95 99
|
eqtr2di |
⊢ ( 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) |
101 |
100
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) |
102 |
98
|
cbvreuvw |
⊢ ( ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ↔ ∃! 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) |
103 |
17 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ∃! 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) |
104 |
|
riota1 |
⊢ ( ∃! 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 → ( ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) ) |
105 |
103 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) ) |
106 |
105
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ↔ ( ℩ 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) = 𝑤 ) ) |
107 |
101 106
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∧ ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) ) |
108 |
107
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
109 |
94 108
|
syld3an1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
110 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑢 ∈ ran 𝐹 ) |
111 |
94 110 17
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) |
112 |
98
|
riota2 |
⊢ ( ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∧ ∃! 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ( ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ↔ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 ) ) |
113 |
109 111 112
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ↔ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) = 𝑤 ) ) |
114 |
93 113
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) |
115 |
114
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ) |
116 |
38
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ) → 𝑡 ∈ 𝐴 ) |
117 |
116
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) → 𝑡 ∈ 𝐴 ) |
118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑡 ∈ 𝐴 ) |
119 |
118
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑡 ∈ 𝐴 ) |
120 |
55
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
121 |
120
|
3adant3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
122 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) ) |
123 |
94 1 122
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) ) |
124 |
109 123
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) |
125 |
124
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹 ‘ 𝑤 ) = 𝑢 ) |
126 |
125
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹 ‘ 𝑤 ) = 𝑢 ) |
127 |
121 126
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑢 ) |
128 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑡 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑢 ) ) ) |
129 |
1 128
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑡 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑢 ) ) ) |
130 |
129
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) → ( 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑡 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑢 ) ) ) |
131 |
130
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑡 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑢 ) ) ) |
132 |
131
|
3adant3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ( 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑡 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑢 ) ) ) |
133 |
119 127 132
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
134 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑤 ∧ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) → ¬ 𝑡 𝑅 𝑤 ) |
135 |
115 133 134
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) → ¬ 𝑡 𝑅 𝑤 ) |
136 |
135
|
rexlimdv3a |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ( ∃ 𝑢 ∈ ran 𝐹 𝑤 = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) → ¬ 𝑡 𝑅 𝑤 ) ) |
137 |
91 136
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑡 𝑅 𝑤 ) |
138 |
86 137
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑡 𝑅 𝑎 ) |
139 |
79 138
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑎 ) |
140 |
71 139
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑏 ) ) → ¬ 𝑏 𝑅 𝑡 ) |
141 |
64 140
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑤 𝑅 𝑡 ) |
142 |
51 52 53 56 141
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ¬ 𝑤 𝑅 𝑡 ) |
143 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
144 |
3 143
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑅 Or 𝐴 ) |
146 |
145
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑅 Or 𝐴 ) |
147 |
38
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ) → 𝑤 ∈ 𝐴 ) |
148 |
147
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) → 𝑤 ∈ 𝐴 ) |
149 |
148
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑤 ∈ 𝐴 ) |
150 |
|
sotrieq2 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 𝑅 𝑡 ∧ ¬ 𝑡 𝑅 𝑤 ) ) ) |
151 |
146 149 118 150
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → ( 𝑤 = 𝑡 ↔ ( ¬ 𝑤 𝑅 𝑡 ∧ ¬ 𝑡 𝑅 𝑤 ) ) ) |
152 |
142 137 151
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑡 ) ) → 𝑤 = 𝑡 ) |
153 |
50 152
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ∧ ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) ) → 𝑤 = 𝑡 ) |
154 |
153
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) → ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) ) |
155 |
154
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺 ) ) → ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) ) |
156 |
155
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ran 𝐺 ∀ 𝑡 ∈ ran 𝐺 ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) ) |
157 |
|
dff13 |
⊢ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 ∧ ∀ 𝑤 ∈ ran 𝐺 ∀ 𝑡 ∈ ran 𝐺 ( ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑡 ) → 𝑤 = 𝑡 ) ) ) |
158 |
42 156 157
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1→ ran 𝐹 ) |
159 |
|
riotaex |
⊢ ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V |
160 |
159
|
rgenw |
⊢ ∀ 𝑢 ∈ ran 𝐹 ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V |
161 |
36
|
fnmpt |
⊢ ( ∀ 𝑢 ∈ ran 𝐹 ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V → 𝐺 Fn ran 𝐹 ) |
162 |
160 161
|
mp1i |
⊢ ( 𝜑 → 𝐺 Fn ran 𝐹 ) |
163 |
|
dffn3 |
⊢ ( 𝐺 Fn ran 𝐹 ↔ 𝐺 : ran 𝐹 ⟶ ran 𝐺 ) |
164 |
162 163
|
sylib |
⊢ ( 𝜑 → 𝐺 : ran 𝐹 ⟶ ran 𝐺 ) |
165 |
164
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐺 ‘ 𝑢 ) ∈ ran 𝐺 ) |
166 |
165
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
167 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → 𝑢 ∈ ran 𝐹 ) |
168 |
159
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ∈ V ) |
169 |
4 34 167 168
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐺 ‘ 𝑢 ) = ( ℩ 𝑣 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ∀ 𝑡 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ¬ 𝑡 𝑅 𝑣 ) ) |
170 |
169 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) |
171 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑢 ) ∈ V |
172 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ) ) |
173 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( 𝑤 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ) ) |
174 |
|
fveqeq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( ( 𝐹 ‘ 𝑤 ) = 𝑢 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) |
175 |
173 174
|
anbi12d |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) ) |
176 |
172 175
|
bibi12d |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) ) ) |
177 |
176
|
imbi2d |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( ( 𝜑 → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) ) ↔ ( 𝜑 → ( ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) ) ) ) |
178 |
1 122
|
syl |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑤 ) = 𝑢 ) ) ) |
179 |
171 177 178
|
vtocl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) ) |
180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ( 𝐺 ‘ 𝑢 ) ∈ ( ◡ 𝐹 “ { 𝑢 } ) ↔ ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) ) |
181 |
170 180
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( ( 𝐺 ‘ 𝑢 ) ∈ 𝐴 ∧ ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) ) |
182 |
181
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = 𝑢 ) |
183 |
166 182
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
184 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑢 ) → ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
185 |
184
|
rspceeqv |
⊢ ( ( ( 𝐺 ‘ 𝑢 ) ∈ ran 𝐺 ∧ 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ ( 𝐺 ‘ 𝑢 ) ) ) → ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) |
186 |
165 183 185
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ran 𝐹 ) → ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) |
187 |
186
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ran 𝐹 ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) |
188 |
|
dffo3 |
⊢ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –onto→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 ⟶ ran 𝐹 ∧ ∀ 𝑢 ∈ ran 𝐹 ∃ 𝑤 ∈ ran 𝐺 𝑢 = ( ( 𝐹 ↾ ran 𝐺 ) ‘ 𝑤 ) ) ) |
189 |
42 187 188
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –onto→ ran 𝐹 ) |
190 |
|
df-f1o |
⊢ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1-onto→ ran 𝐹 ↔ ( ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1→ ran 𝐹 ∧ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –onto→ ran 𝐹 ) ) |
191 |
158 189 190
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1-onto→ ran 𝐹 ) |
192 |
|
reseq2 |
⊢ ( 𝑣 = ran 𝐺 → ( 𝐹 ↾ 𝑣 ) = ( 𝐹 ↾ ran 𝐺 ) ) |
193 |
|
id |
⊢ ( 𝑣 = ran 𝐺 → 𝑣 = ran 𝐺 ) |
194 |
|
eqidd |
⊢ ( 𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹 ) |
195 |
192 193 194
|
f1oeq123d |
⊢ ( 𝑣 = ran 𝐺 → ( ( 𝐹 ↾ 𝑣 ) : 𝑣 –1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1-onto→ ran 𝐹 ) ) |
196 |
195
|
rspcev |
⊢ ( ( ran 𝐺 ∈ 𝒫 𝐴 ∧ ( 𝐹 ↾ ran 𝐺 ) : ran 𝐺 –1-1-onto→ ran 𝐹 ) → ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑣 ) : 𝑣 –1-1-onto→ ran 𝐹 ) |
197 |
39 191 196
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑣 ) : 𝑣 –1-1-onto→ ran 𝐹 ) |
198 |
|
reseq2 |
⊢ ( 𝑣 = 𝑥 → ( 𝐹 ↾ 𝑣 ) = ( 𝐹 ↾ 𝑥 ) ) |
199 |
|
id |
⊢ ( 𝑣 = 𝑥 → 𝑣 = 𝑥 ) |
200 |
|
eqidd |
⊢ ( 𝑣 = 𝑥 → ran 𝐹 = ran 𝐹 ) |
201 |
198 199 200
|
f1oeq123d |
⊢ ( 𝑣 = 𝑥 → ( ( 𝐹 ↾ 𝑣 ) : 𝑣 –1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐹 ) ) |
202 |
201
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑣 ) : 𝑣 –1-1-onto→ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐹 ) |
203 |
197 202
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝐹 ) |