Metamath Proof Explorer


Theorem wetrep

Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994)

Ref Expression
Assertion wetrep ( ( E We 𝐴 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )

Proof

Step Hyp Ref Expression
1 weso ( E We 𝐴 → E Or 𝐴 )
2 sotr ( ( E Or 𝐴 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) )
3 1 2 sylan ( ( E We 𝐴 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) )
4 epel ( 𝑥 E 𝑦𝑥𝑦 )
5 epel ( 𝑦 E 𝑧𝑦𝑧 )
6 4 5 anbi12i ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) ↔ ( 𝑥𝑦𝑦𝑧 ) )
7 epel ( 𝑥 E 𝑧𝑥𝑧 )
8 3 6 7 3imtr3g ( ( E We 𝐴 ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )