Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | wetrep | ⊢ ( ( E We 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso | ⊢ ( E We 𝐴 → E Or 𝐴 ) | |
2 | sotr | ⊢ ( ( E Or 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) | |
3 | 1 2 | sylan | ⊢ ( ( E We 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) |
4 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
5 | epel | ⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
6 | 4 5 | anbi12i | ⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) ) |
7 | epel | ⊢ ( 𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧 ) | |
8 | 3 6 7 | 3imtr3g | ⊢ ( ( E We 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |