Step |
Hyp |
Ref |
Expression |
1 |
|
wexp.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } |
2 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
3 |
|
wefr |
⊢ ( 𝑆 We 𝐵 → 𝑆 Fr 𝐵 ) |
4 |
1
|
frxp |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |
6 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
7 |
|
weso |
⊢ ( 𝑆 We 𝐵 → 𝑆 Or 𝐵 ) |
8 |
1
|
soxp |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |
10 |
|
df-we |
⊢ ( 𝑇 We ( 𝐴 × 𝐵 ) ↔ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ∧ 𝑇 Or ( 𝐴 × 𝐵 ) ) ) |
11 |
5 9 10
|
sylanbrc |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 We ( 𝐴 × 𝐵 ) ) |