| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
| 3 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
| 4 |
|
sopo |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
| 7 |
|
simpr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) |
| 8 |
2 6 7
|
3jca |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 9 |
|
frpoind |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |
| 10 |
8 9
|
sylan |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝐵 → 𝑦 ∈ 𝐵 ) ) ) → 𝐴 = 𝐵 ) |