| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wefr | ⊢ ( 𝑅  We  𝐴  →  𝑅  Fr  𝐴 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Fr  𝐴 ) | 
						
							| 3 |  | weso | ⊢ ( 𝑅  We  𝐴  →  𝑅  Or  𝐴 ) | 
						
							| 4 |  | sopo | ⊢ ( 𝑅  Or  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑅  We  𝐴  →  𝑅  Po  𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Po  𝐴 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  𝑅  Se  𝐴 ) | 
						
							| 8 | 2 6 7 | 3jca | ⊢ ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  →  ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 ) ) | 
						
							| 9 |  | frpoind | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) )  →  𝐴  =  𝐵 ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 )  ∧  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝐵  →  𝑦  ∈  𝐵 ) ) )  →  𝐴  =  𝐵 ) |