Metamath Proof Explorer


Theorem wfis

Description: Well-Ordered Induction Schema. If all elements less than a given set x of the well-ordered class A have a property (induction hypothesis), then all elements of A have that property. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis.1 𝑅 We 𝐴
wfis.2 𝑅 Se 𝐴
wfis.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
Assertion wfis ( 𝑦𝐴𝜑 )

Proof

Step Hyp Ref Expression
1 wfis.1 𝑅 We 𝐴
2 wfis.2 𝑅 Se 𝐴
3 wfis.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
4 3 wfisg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
5 1 2 4 mp2an 𝑦𝐴 𝜑
6 5 rspec ( 𝑦𝐴𝜑 )