Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis2.1 | ⊢ 𝑅 We 𝐴 | |
| wfis2.2 | ⊢ 𝑅 Se 𝐴 | ||
| wfis2.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
| wfis2.4 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | ||
| Assertion | wfis2 | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis2.1 | ⊢ 𝑅 We 𝐴 | |
| 2 | wfis2.2 | ⊢ 𝑅 Se 𝐴 | |
| 3 | wfis2.3 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | wfis2.4 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
| 5 | 3 4 | wfis2g | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
| 6 | 1 2 5 | mp2an | ⊢ ∀ 𝑦 ∈ 𝐴 𝜑 |
| 7 | 6 | rspec | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |