Metamath Proof Explorer


Theorem wfis2

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2.1 𝑅 We 𝐴
wfis2.2 𝑅 Se 𝐴
wfis2.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
wfis2.4 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion wfis2 ( 𝑦𝐴𝜑 )

Proof

Step Hyp Ref Expression
1 wfis2.1 𝑅 We 𝐴
2 wfis2.2 𝑅 Se 𝐴
3 wfis2.3 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
4 wfis2.4 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
5 3 4 wfis2g ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
6 1 2 5 mp2an 𝑦𝐴 𝜑
7 6 rspec ( 𝑦𝐴𝜑 )