Metamath Proof Explorer


Theorem wfis2f

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2f.1 𝑅 We 𝐴
wfis2f.2 𝑅 Se 𝐴
wfis2f.3 𝑦 𝜓
wfis2f.4 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
wfis2f.5 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion wfis2f ( 𝑦𝐴𝜑 )

Proof

Step Hyp Ref Expression
1 wfis2f.1 𝑅 We 𝐴
2 wfis2f.2 𝑅 Se 𝐴
3 wfis2f.3 𝑦 𝜓
4 wfis2f.4 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
5 wfis2f.5 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
6 3 4 5 wfis2fg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )
7 1 2 6 mp2an 𝑦𝐴 𝜑
8 7 rspec ( 𝑦𝐴𝜑 )