Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfis2f.1 | ⊢ 𝑅 We 𝐴 | |
wfis2f.2 | ⊢ 𝑅 Se 𝐴 | ||
wfis2f.3 | ⊢ Ⅎ 𝑦 𝜓 | ||
wfis2f.4 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
wfis2f.5 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | ||
Assertion | wfis2f | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis2f.1 | ⊢ 𝑅 We 𝐴 | |
2 | wfis2f.2 | ⊢ 𝑅 Se 𝐴 | |
3 | wfis2f.3 | ⊢ Ⅎ 𝑦 𝜓 | |
4 | wfis2f.4 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
5 | wfis2f.5 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
6 | 3 4 5 | wfis2fg | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
7 | 1 2 6 | mp2an | ⊢ ∀ 𝑦 ∈ 𝐴 𝜑 |
8 | 7 | rspec | ⊢ ( 𝑦 ∈ 𝐴 → 𝜑 ) |