Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfis2fg.1 | ⊢ Ⅎ 𝑦 𝜓 | |
wfis2fg.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | ||
wfis2fg.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | ||
Assertion | wfis2fg | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis2fg.1 | ⊢ Ⅎ 𝑦 𝜓 | |
2 | wfis2fg.2 | ⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) | |
3 | wfis2fg.3 | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 → 𝜑 ) ) | |
4 | sbsbc | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) | |
5 | 1 2 | sbiev | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
6 | 4 5 | bitr3i | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
7 | 6 | ralbii | ⊢ ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 ) |
8 | 7 3 | syl5bi | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 → 𝜑 ) ) |
9 | 8 | wfisg | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ∀ 𝑦 ∈ 𝐴 𝜑 ) |