Metamath Proof Explorer


Theorem wfis2fg

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2fg.1 𝑦 𝜓
wfis2fg.2 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
wfis2fg.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion wfis2fg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 wfis2fg.1 𝑦 𝜓
2 wfis2fg.2 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
3 wfis2fg.3 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
4 sbsbc ( [ 𝑧 / 𝑦 ] 𝜑[ 𝑧 / 𝑦 ] 𝜑 )
5 1 2 sbiev ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
6 4 5 bitr3i ( [ 𝑧 / 𝑦 ] 𝜑𝜓 )
7 6 ralbii ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓 )
8 7 3 syl5bi ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) [ 𝑧 / 𝑦 ] 𝜑𝜑 ) )
9 8 wfisg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )