Metamath Proof Explorer


Theorem wfis2g

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2g.1 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
wfis2g.2 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
Assertion wfis2g ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 wfis2g.1 ( 𝑦 = 𝑧 → ( 𝜑𝜓 ) )
2 wfis2g.2 ( 𝑦𝐴 → ( ∀ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑦 ) 𝜓𝜑 ) )
3 nfv 𝑦 𝜓
4 3 1 2 wfis2fg ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ∀ 𝑦𝐴 𝜑 )